您好,欢迎来到划驼旅游。
搜索
您的当前位置:首页电力电子课设三相半波波整流电路的设计

电力电子课设三相半波波整流电路的设计

来源:划驼旅游
电力电子课设三相半波波整流电路的设计.txt昨天是作废的支票;明天是尚未兑现的期票;只有今天才是现金,才能随时兑现一切。人总爱欺骗自己,因为那比欺骗别人更容易。 本文由我的天涯人生贡献

doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 武汉理工大学《电力电子技术》课程设计说明书

目录

1.设计任务及要求 …… 1 设计任务及要求 1.1 设计技术初始条件 …… 1 1.2 设计完成的任务 …… 1 2.设计过程分析 …… 1 2.1 主电路组成 …… 1 2.2 电路参数的确定 …… 2 2.2.1 续流电感及变压器参数确定 …… 2 2.1.2 晶闸管参数选择 …… 4 3. 硬件实现 …… 4 3.1 整流电路 …… 4 3.2 触发电路设计 …… 5 3.3 保护电路的设计 …… 7 3.3.1 过电压保护电路设计 …… 7 3.3.2 过电流保护电路设计 …… 8 3.3.3 缓冲电路的设计 …… 8 4.仿真实现 …… 9 仿真实现 4.1 脉冲波形仿真分析 …… 11 4.2 整流输出波形仿真分析 …… 12 .3 晶闸管工作参数仿真分析 …… 14 心得体会 …… 15 参考文献 …… 16

武汉理工大学《电力电子技术》课程设计说明书 三相半波波整流电路的设计

1.设计任务及要求

1.1 设计技术初始条件 设计三相半波整流电路, 直流电动机负载电机技术参数如下: Unom=220V, Inom=136A, n 1460 r?min ,C Φ 0.132V min?r ,允许过载电流倍数λ=1.5;电枢回路总电阻 R=0.5Ω;

1.2 设计完成的任务

(1) 方案设计。 (2) 完成主电路的原理分析,过主要元件的选择。 (3) 触发电路保护电路的设计。 (4) 利用 MATLAB 仿真软件建模并仿真,获取电压电流波形,对结果进行分析。 (5) 撰写设计说明书。

2.设计过程分析 2.1 主电路组成 三相半波整流电路主要由变压器、半波整整流流晶闸管及各级保护电路组成。由于电 网电压通常与直流电机工作的正常电压,存在差别所以通常在整流变换是需要对电网电压 进行变压,此外为了减少整流电路的多次谐波,通常变压器需要三角形—Y 接法,此外由 于晶闸管在整流工作过程中存在过电压、过电流快速关断、快速导通的过程,所以需要在 主电路中设置过电压、过电流以及缓冲电路,具体框图如下: 1

武汉理工大学《电力电子技术》课程设计说明书 电网 变压器 整流电路 过电流保护 负载

过电压抑制电路 缓冲电路

2.2 电路参数的确定

根据所给的设计要求,首先计算出满足设计要求的电路参数。 2.2.1 续流电感及变压器参数确定

根据电机的正常工作状态参数n 工作条件下直流电机反电动势为: Em C Φ n 0.132

1460 192.7 (2-1) 1460 r?min 、C Φ 0.132V min?r,可得正常

对于三相桥式半控整流带电动机负载的电路系统,为保证电流连续所需的主回路电感量 L (mH)为: L 1.46 (2-2)

其中 L--包括整流变压器的漏电感、电枢电感和平波电抗器的电感。前者数值都较小,有时 可忽略。 Id 的最小值 Idmin 一般去电动机额定电流的 5%~10%。则有: I 供电电源电压计算公式为 U 其中 U 为变压器输出电压 E为电机正常工作的反电动式即 E= Unom . α 8% × I 8% 136 11.6 (2-3) (2-4)

α 为触发角 R 为回路总电阻 2

武汉理工大学《电力电子技术》课程设计说明书 I

为回路工作电流

由负载电机参数,Unom=220V,Inom=136A,R=0.5 考虑到电路中其他元器件的分压 这里取 R=1Ω则有: u

. α . ° 304 V (2-5)

变压器二次侧电流有效值: I √ I √ 136

78.52 A

(2-6)

显然选用输出端电压大于 304V 的变压器,方可满足供电要求,联系实际应选择二次侧输 出电压为 380V 的变压器。 由半波整流变压器一次测电流与二次侧电流关系I 压为 400V)变压器额定输出电功率: P 3U I 3 400 0.472 78.52 44.5 KW (2-7) 0.472I 可知 (设变压器一次侧输入电

由输入端与输出端功率关系:知输入功率: S 44.5KW (2-8)

实际整流输出电压,可根据触发角 α 来调整,由变压器数我们可以计算实际工作中的 输出电压范围。而且晶闸管触发脉冲角度应该满足,在触发角 α =0 时所要求的最小度数, 设晶闸管的触发脉冲角度为γ,则当 α =0 时γ=30°此时半波整流电路中的输出电压最大。 最大触发角 α ,设电路中电阻只有电机电阻即 R=0.5 则有上面的公式可知: cos α . . .

0.887 2-9)

可以解得 α =28°即电路中晶闸管的触发脉冲电路起始角γ最大为 58°最小为 30°。

本设 计中初步整定为γ=60°。 当γ=60 时整流输出电压 U 所以回路总电流 I 165(A) (2-11) u 1.17 cos α 380 1.17 cos 30° 385(V) (2-10)

由于电路实际工作中电阻值大于电机工作电阻所以实际工作电流值小于此值。由此可知续 流电感值: 3

武汉理工大学《电力电子技术》课程设计说明书 武汉理工大学 L 1.46 .

47.5(mh) (2-12)

2.1.2 晶闸管参数选择

根据晶闸管电流参数选择原则公式 参数选择原则公式: I 2~3 .

(2-13)

其中: 考虑的安全裕量为 2~3 倍 I 为整流电路正常工作最大电流的有效值 I 为所选择晶闸管的工作电流参数 即选择额定电流至少为: I 2 . . 260 A

(2-14)

的晶闸管作为本次设计电路的整流电路元件。 的晶闸管作为本次设计电路的整流电路元件 根据三相半波整流电路分析知道晶闸管承受的最大反相电压为变压器的二次线电压峰值 根据三相半波整流电路分析知道 晶闸管承受的最大反相电压为变压器的二次线电压峰值 的 2.45 倍,即晶闸管最大反向 最大反向额定电压: U 2.45 380 931 V √2 380 (2-15) 538(V)

而晶闸管所承受的最大正向电压为输入电压的峰值电压:U 而晶闸管所承受的最大正向电压为输入电压的峰值电压

3. 硬件实现 3.1 整流电路

图 3-1 半波整流电路基本原理图

部分电路如图 原理是,当三相正弦交流电 三相半波整流电路部分电路如图 3-1 所示吗,其具体实现原理是 压加在晶闸管上,由于晶闸管的单向导通特性 当晶闸管两端加上正向电压,且存在触发 由于晶闸管的单向导通特性,当晶闸管两端加上正向电压 4

武汉理工大学《电力电子技术》课程设计说明书 武汉理工大学 脉冲时晶闸管导通,整流输出端有电压输出 当正弦电压变负时晶闸管由于承受反向电压 整流输出端有电压输出,当正弦电压变负时晶闸管由于承受反向电压 截止,输出端没有电压输出 。从而实现整流变化。在图示电路中当加在晶闸管两端的两 输出端没有电压输出, 电路中当加在晶闸管两端的两 相电压,阳极端相电压高于阴极时在触发脉冲的触发下 晶闸管就会导通。同理 Q2、Q3 阳极端相电压高于阴极时在触发脉冲的触发下,晶闸管就会导通 也会在阳极电压高于阴极电压的时候触发导通,从而实现三相电压的整流 也会在阳极电压高于阴极电压的时候触发导通 从而实现三相电压的整流。 根据触发角的不同可以适当调整输出电压,而且单相半波整流电路所带负载不同 根据触发角的不同可以适当调整输出电压 而且单相半波整流电路所带负载不同,其 输出电压波形也存在差异,在 在阻感负载下,如果 L 值

很大,id 波形基本平直 波形基本平直。电路有如下 特点:

图 3-2 半波整流电路 a=30°时波形 (1) a≤30°时:整流电压波形与电阻负载时相同 整流电压波形与电阻负载时相同。 (2) a>30°时(如 a=60°时的波形如图 3-2 所示) 时的波形如图 。 u2 过零时, 不关断, VT1 , 直到 VT2 的脉冲到来, 才换流, ——ud 波形中出现负的部分 波形中出现负的部分。 id 波形有一定的脉动,但为简化分析及定量计算 但为简化分析及定量计算,可将 id 近似为一条水平线 近似为一条水平线。 (3) 阻感负载时的移相范围为 90°。 若接电动机负载则相当于电压源与电感、电阻负载串联。 若接电动机负载则相当于电压源与电感 3.2 触发电路设计

由于三相半波整流电路中晶闸管需要在不同的时候导通,而且要保持与三相交流电频 由于三相半波整流电路中晶闸管需要在不同的时候导通 而且要保持与三相交流电频 率保持一致,所以需要具体设计触发晶闸管的导通 所以需要具体设计触发晶闸管的导通脉冲。 本设计中采用 Kj004 脉冲触发集成芯片实现 脉冲触发集成芯片实现,集成芯片具有可靠性高 可靠性高,技术性能好,

5

武汉理工大学《电力电子技术》课程设计说明书

体积小,功耗低,调试方便等特点而受到广泛应用。其脉冲形成原理与分立元件的锯齿波 移相触发电路相似, 分为同步、锯齿波形成、移相、脉冲形成、脉冲分选及脉冲放大几个 环节其内部原理图见图 3-3:

R12 R1 R3 R4 R6 VS1 VS2 VS3 R5 V2 V3 5 R23 RP1 R24 ub R2 VS5 3 4 C1 R26 R25 uco R27 9 11 C2 12 13 R28 R7 R8 V18 V19 V4 V5 VD1 R10 V20 R19 V6 R13 R11 R14 VD5VD4 V17 VD3 VD2 R15 VD6 VS6 R16 VD7 VS8 R20 14 +15V R18 VS7 V8 R17 V14 R21 V15 V13 V9 V10 V11 1 16

R20 8 RP4 us 7 V1 VS4 V7

VS9 V12 R22 V16 15

图 3-3 KJ004 触发芯片内部原理图

触发电路的定相问题,触发电路应保证每个晶闸管触发脉冲与施加于晶闸管的交流电 压保持固定、正确的相位关系其具体措施如下: (1) 同步变压器原边接入为主电路供电的电网,保证频率一致 (2) 触发电路定相的关键是确定同步信号与晶闸管阳极电压的关系 (3) 同步信号负半周的起点对应于锯齿波的起点,通常使锯齿波的上升段为 240°,上升段 起始的 30°和终了的 30°线性度不好,舍去不用,使用中间的 180°。 (4) 使 Ud=0 的触发角 α 为 90°。当 α <90°时为整流工作, α >90°时为逆变工作 (5) 将 α =90°确定为锯齿波的中点, 锯齿波向前向后各有 90°的移相范围。 于是 α =90°与同 步电压的 300°对应,也就是 α =0°与同步电压的 210°对应。由图 2-58 及 2.2 节关于三 相桥的介绍可知, α =0°对应于 ua 的 30°的位置,则同步信号的 180°与 ua 的 0°对应。 (6) 变压器接法:主电路整流变压器为 D,y-11 联结,同步变压器为 D,y-11,5 联结 具体外部电路实现见电路原理图部分。

6

武汉理工大学《电力电子技术》课程设计说明书 3.3 保护电路的设计

3.3.1 过电压保护电路设计

电力电子装置在实际工作中,由于工作环境的影响,可能存在过电压过电流运行的情 况,所以我们在设计电路中要先考虑到这些因素并采取一定防御措施,一般情况下可能的 过电压分为外因过电压和内因过电压。 外因过电压 (1) 操作过电压:由分闸、合闸等开关操作引起 (2) 雷击过电压 内因过电压 (1) 换相过电压:晶闸管或与全控型器件反并联的二极管在换相结束后不能立刻恢复 阻断, 因而有较大的反向电流流过, 当恢复了阻断能力时, 该反向电流急剧减小, 会由线路电感在器件两端感应出过电压 (2) 关断过电压:全控型器件关断时,正向电流迅速降低而由线路电感在器件两端感 应出的过电压,对于晶闸管来说由于晶闸管的关断是考电网电压变化关断的所以 不存在关断过电压。 外因过电压抑制措施中,RC 过电压抑制电路最为常见,典型联结方式见下图 3-4,RC 过电压抑制电路可接于供电变压器的两侧 (供电网一侧称网侧, 电力电子电路一侧称阀侧) , 或电力电子电路的直流侧。 对于大容量电力电子装置可采用图 4-5 所示的反向阻断式 RC 电路, 本设计电路中考虑 到直流电机工作电压较高,电流较大所以采用反向阻断式 RC 过电压保护电路。 其工作原理为保护电路中,RC 电路对于电网电压有一定的钳位作用,使得电网中电压 不至于发生剧烈变化,当电网电压发生大的变化是,电容的满充电效应会阻止电网电压变 化,从而起到一直电网电压冲击的作用,但是电网电压长期较高时,电容充放电不足以抵 消电网电压变化作用,从而失去保护效能。 7

武汉理工大学《电力电子技术》课程设计说明书 Ca Ra Ca Ra 网侧 电力电子装置 Ca Ra

Ca Ra 阀侧 R1

Rdc b) Cdc + C2 C1 - Rdc a) Cdc + 直流侧

R2

过电压抑制电路

图 3-4 过电压抑制 RC 电路 图 3-5 过电压抑制电路

3.3.2 过电流保护电路设计

当电力电子装置所在电路发生短路或电机等负载出现过载时,就会出现过流现象。常 用措施是采用快速熔断器、直流快速断路器和过电流继电器,通常情况下同时采用几种过 电流保护措施,提高可靠性和合理性,电力电子装置相对于其他电路装置更为脆弱,所以 电子电路通常作为第一保护措施,快熔仅作为短路时的部分区段的保护,直流快速断路器 整定在电子电路动作之后实现保护,过电流继电器整定在过载时动作。 电力电子装置中最有效、应用最广的一种过电流保护措施,选择快熔时应考虑如下因 素: (1)电压等级根据熔断后快熔实际承受的电压确定 (2)电流容量按其在主电路中的接入方式和主电路联结形式确定 (3)快熔的 I 2t 值应小于被保护器件的允许 I 2t 值 (4)为保证熔体在正常过载情况下不熔化,应考虑其时间?电流特性 电机工作中通常只会出现过载现象,本设计中采用熔断器保护,分别

在电网侧和直流 侧设置过流保护熔断器,实现过流保护。具体电路见附录中总电路图部分。 3.3.3 缓冲电路的设计

电力电子装置,由于频繁开通或关断,因而会产生开通或关断的瞬间电压电流变化, 这一过程通常会导致电力电子器件的老化或损坏,所以要设置缓冲电路,缓冲电路(吸收 8

武汉理工大学《电力电子技术》课程设计说明书 武汉理工大学

电路) :是用来抑制器件的内因过电压 抑制器件的内因过电压、du/dt、过电流和,减小器件的开关损耗 减小器件的开关损耗。 缓冲电路分为关断缓冲和开通缓冲,其中: 缓冲电路分为关断缓冲和开通缓冲 关断缓冲电路(抑制电路) )——吸收器件的关断过电压和换相过电压 吸收器件的关断过电压和换相过电压,抑制 du/dt,减小 关断损耗 开通缓冲电路(di/dt 抑制电路 抑制电路)——抑制器件开通时的电流过冲和 di/dt,减小器件的开 抑制器件开通时的电流过冲和 通损耗 通常缓冲电路专指关断缓冲电路,将开通缓冲电路叫做 di/dt 抑制电路 通常缓冲电路专指关断缓冲电路 抑制电路。对于三相半波整 流电路,只需考虑开通缓冲电路即可 只需考虑开通缓冲电路即可。 具体设计为在晶闸管两端并联一个 RC 支路,抑制晶闸管开通瞬间的 du/dt 作用。 抑制晶闸管开通瞬间的 在整 流电路中加入 LRD 并联支路来抑制开通过程中的 di/dt。电路如图 图 3-6 du/dt 抑制电路 图 3-7 di/dt 抑制电路 7 4.仿真实现

本设计电路中几乎所有元件都可以在 MATLAB 找到原型,但那是由于直流电机所需参 所有元件都可以在 但那是由于直流电机所需参 数很多,而设计要求中所给条件 无法具体确定直流电机的所有参数,所以无法用直流电 而设计要求中所给条件,无法具体确定直流电机的所有参数 机直接仿真。但是在各种电路书中我们了解到 电机实际上可由带有电压源的电感和电阻 但是在各种电路书中我们了解到,电机实际上可由带有电压源的电感和电阻 代替,所以仿真部分我们把直流电机 直流电机负载等效为电压源、电阻和电感的串联 电阻和电感的串联。 另外由于没有三相晶闸管的触发电路仿真模型,所以需要用脉冲发生器代替 另外由于没有三相晶闸管的触发电路仿真模型 需要用脉冲发生器代替晶闸管的 脉冲触发电路 仿真电路图见图 4-1 9

武汉理工大学《电力电子技术》课程设计说明书 图 4-1 仿真原理图 10

武汉理工大学《电力电子技术》课程设计说明书 4.1 脉冲波形仿真分析

由于变压器所输送的电压,高于实际电机正常工作的电压,所以整流输出电压要适 图 4-2 对应各相输入电压波形与触发脉冲位置比较(正弦波分别为 a、b、c 三相) 当的降压处理,利用晶闸管的单向导电性,适当调整触发角,使晶闸管延迟导通,从而当 调整整流输出电压。如图 4-2 为触发角为 30°时脉冲输出波形与输入电压波形比较图。 在触发电路设计中我们知道,触发脉冲与输入电压是同频率的,设置触发脉冲到来时 间,就可以设置晶闸管的导通时刻,但是触发脉冲时间上又有所,至少要在三相电压 的自然换向点之后触发才能实现整流输出。即当触发角为 0°时,脉冲触发初始时刻应该

11

武汉理工大学《电力电子技术》课程设计说明书 为 30°。当α=30°事触发脉冲的初始角为 60°。具体第一个晶闸管脉冲发生时间计算

方 法为: (其中γ为脉冲发生初始角 γ=α+30°) t γ 。 0.02 (4-1)

其后个晶闸管的脉冲发生时间依次延后 120°角度。 由三相半波整流电路输出电压与输入电压关系公式我们可以知道,触发角愈大则输出 电压愈小。当实际输出电压但与电机正常过坐的额定电压时,我们可以适当调整触发角, 降低整流输出电压,反之则适当减小触发角,这样就可以通过调整触发角实现电机控制电 压的调节。 此外由于三个晶闸管的阴极和阳极接在不同的输出电压相位上,所以一个周期内每个 晶闸管的导通时刻是不同的,所以触发脉冲产生的时刻也不同,其中 VT1 最先导通 VT2、 VT3 依次滞后 120°,具体的波形我们可以从图 4-2 中看到。

4.2 整流输出波形仿真分析

经过晶闸管三相半波整流输出后,输出电压电流变为直流。晶闸管要求在三相自然换 向点以后进行触发,当负载为纯电阻性负载时输出电压与电流波形完全一致,由于本电路 中所带负载为电动机负载,所以输出电压波形与输出电流波形不一致,具体输出波形与三 相交流输出波形关系如图 4-3 所示。 从图中我们可以看到当触发角为 30°时输出电压并没有负值但是最低电压降到了零 (红色线为输出电压波形曲线) ,此时输出电压处于全部为正和出现负值的临界状态,当 继续增大触发角时,我们就可以发现整流输出电压出现负值的结果如图 4-4 为触发角为 60° 时的输出波形。 图中黄色线为输出电流变化曲线,我们可以看到电流在初始刻为缓慢上升的,最终趋 于水平,当整流电路接电动机负载时由于电机的阻抗作用,输出电流变化不大,并最终趋 于水平,另外由于本电路设计时考虑到电流的连续性问题,即加入了续流电感,它同样可 以对输出电流起到平波的作用。 12

武汉理工大学《电力电子技术》课程设计说明书 图 4-3 整流输出波形与三相交流输出波形关系 图 4-4

13

武汉理工大学《电力电子技术》课程设计说明书 .3 晶闸管工作参数仿真分析

有晶闸管的工作特点我们可以知道,当晶闸管导通时,其两端电压为零,而此时流过 晶闸管的电流即为负载电流值。当晶闸管截止时流过晶闸管的电流值为零,但是有与晶闸 管接在两相电压之间所以要承受的最大电压是线电压峰值,图 4-5 为仿真波形图,可以看 到晶闸管工作过程中的,电压、电流情形。

图 4-5 晶闸管的工作时电压电流波形图(正弦波为 ab 间线电压) 14

武汉理工大学《电力电子技术》课程设计说明书

心得体会

又一次课设做完,终于可以松一口气了,想想这几天坐没日没夜在电脑前,冥思苦学 的经历,真是连自己也不敢相信自己竟有如此大的耐心,但是每次做课设总会有一个相同 的感受那就是,后悔平时没有,把有限的时间好好利用起来学点东西,书到用时方恨少, 真的是这种感觉。虽然每次课设仅仅是根据多学的东西,做一个小的课题,但是理论是理 论,要付诸实践还是有更远的路要走。 记得去年,做 MATLAB 基础强化训练的时候,刚开始接触 MATLAB 工具,觉得它的功 能实在很强大,但是时间有限,所以我们也只是学了个皮毛,而

且之后用的机会很少,所 以现在再次拿起这个工具的时候不禁觉得有点手生,特别是这次与以往用的工具不同,要 用到 simlink 实现图形仿真,所以在干刚拿到题目的时候,我又不得不研究 simlink 的用法 和具体实现方式。 现在回想起来, 我从当初一个对 simlink 一无所知, 到现在基本掌握它的一些基本用法, 确实是一个不小的收获,也许这也就叫做在实践中成长吧。很多时候我们明知道那门学问 有用,但是当我们没有具体的用到它的时候,我们都不愿意花时间去研究它,我想主要原 因有人本身的惰性,也有没有目的性也就难以激发学习兴趣的原因,通常我们在压力下, 学习某东西的效率很高,而且能够马上学以致用,从成功的结果中得到成功的喜悦,同时 以激发了我们的学习兴趣。 这次课设不经让我学到了更多关于 MATLAB 的知识,同样也使我在学习电力电子课程 中,遇到的很多疑惑得到了解决,是我对半波整流电路的工作原理和实际工作结果,有了 更清楚的认识,对电路触发的工作原理也更加熟悉,同时也懂得了怎样用手中的实用工具 来解决学习中的问题,通过仿真我们可以更具体的了解,某一系统的具体工作过程,对加 深理解有很大的帮助。 总之课设事小,收获多多!每一次课设,每一次进步,每一次成长。 15

武汉理工大学《电力电子技术》课程设计说明书 参考文献

[1]. 王兆安 刘进军 主编 电力电子技术》 第五版

机械工业出版社 2009 2006

[2]. 洪乃刚 等编著《电力电子和电力拖动控制系统的 MATLAB 仿真》机械出版社 [3]. 《电力电子与 MATLAB 仿真 》 具体信息不祥 2010 [4]. EDA 工程与应用丛书 《Protel99SE 电路设计案例精解》机械工业出版社 [5]. 李法海 王岩编著 《电机与拖动基础》 清华大学出版社 2006

[6]. 贾秋玲 袁冬莉 栾云凤编著 《MATLAB7.x/simlink/stqateflow 系统仿真、 分析及设计》 西北工业大学出版社 [7]. 赵景波 主编 2006 机械出版社 2010 《Protel99SE 电路设计与制板》 16 1

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo6.com 版权所有 湘ICP备2023023988号-11

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务