您好,欢迎来到划驼旅游。
搜索
您的当前位置:首页1510.02182v1

1510.02182v1

来源:划驼旅游
5102 tcO 8 ]cq-rg[ 1v28120.015:1viXraEntropyintheinteriorofablackholeandthermodynamics

BaochengZhang∗

SchoolofMathematicsandPhysics,

ChinaUniversityofGeosciences,Wuhan430074,China

Abstract

Basedonarecentproposalforthevolumeinsideablackhole,wecalculatetheentropyassociatedwiththisvolumeandshowthatsuchentropyisproportionaltothesurfaceareaoftheblackhole.Togetherwiththeconsiderationofblackholeradiation,wefindthatthethermodynamicsassociatedwiththeentropyishighlypossibletobecausedbythevacuumpolarizationnearthehorizon.

I.INTRODUCTION

Howbigisablackhole?Thisisnotaneasyquestion,sincethedefinitionofthevolumeofthespaceinsideablackholedependsonhowthespacetimeisslicedintospaceandtime,unlikethesurfaceareaoftheblackholethatisthesameforallobservers.Intuitively,anicedescriptionforthevolumeshouldbeslicinginvariant,whichwasmadefirstlybyParikh[1]andalsodiscussedbyothers[2–6].Recently,adifferentmethodwassuggestedbyChristodoulouandRovelli[7]basedonasimpleobservationthattheinteriorofSchwarzschildblackholesisnotstatic,whichleadedtoanothersensibledescriptionforthevolumeasthelargestvolumeboundedbytheeventhorizonofablackhole.ForaSchwarzschildblackhole,theyshowedthatatlatetimethevolumetooksuchanexpression,

VCR∼3

Thestructureofthepaperisasfollows.Firstly,wewillrevisitthedefinitionofthevolumeinsideablackholebyChristodoulouandRovelli,andpresentexplicitlythechoiceofthemaximalhypersurfaces[14]bymaximalslicing[15,16]inthesecondsection.Then,wecalculatetheentropyinthevolumeusingthestandardstatisticalmethodinthethirdsection.Intheforthsection,wediscussthefirstlawofblackholethermodynamics,inparticularforthenewlyobtainedentropy,whichisrelatedtothevacuumpolarization[17]nearthehorizonoftheblackhole.Finally,wewillgiveaconclusioninthefivesection.

II.BLACKHOLEVOLUMEANDMAXIMALSLICING

StartwiththegeometryofacollapsedobjectasinRef.[7],whichcanbedescribedwiththeEddington-Finkelsteincoordinates,

ds2=−f(r)dv2+2dvdr+r2dθ2+r2sin2θdφ2

wheref(r)=1−

2M

f(r)

(2)

=t+r+2Mln|r−2M|.In

particular,wehavetakentheunitsG=c=󰀁=kB=1.Theadvantageofthecoordinatesoverthestaticoneisthatthereisnocoordinatesingularityattheeventhorizon.Thusitcanbeanalyticallycontinuedtoallr>0,whichisrequiredforthedescriptionofthegeometryofthecollapsedmatter.

Inordertocalculatethevolume,aproperhypersurfacehastobechosen.

With

antransformationv→v(T,λ),r→r(T,λ),thecoordinates(2)becomesds2=󰀃󰀄󰀁∂v󰀂2

∂r∂v

−f+2∂λdλ2+r2dθ2+r2sin2θdφ2wherewehave∂T∂λ

assumedthecrosstermvanishesbytakingthetransformationproperly.Inparticular,ifthe

󰀁∂v

∂r√condition−f∂TthehypersurfaceΣ:T=constant,isthatchoseninRef.[7]wherethesphericallysymmetric

−fdTwhichalsoremovesthecrosstermsimultaneously)isenforced,onewillfindthat

hypersurfaceistakenasthedirectproductofa2-sphereandanarbitrarycurveparameter-izedbyλinv-rplane.Inparticular,itisnotedthatthehypersurfaceT=constantisable

tobegottenbyr=constantaccordingtothetransformationdr=

wherethedotrepresentsthepartialderivativewithregardtotheparameterλ,and−f(r)v˙2+2v˙r˙>0forthespacelikehypersurface.Themaximalvolumecanbeobtainedbytheintegral,

VΣ=4π󰀊dλ

󰀋

2

M,(5)

which,togetherwithEq.(4),givestheCRvolumeexpressedinEq.(1).

Ontheotherhand,themaximizationcanalsobecalculatedinmathematicalrelativity[18]whereamethodcalledasmaximalslicingcanleadtohypersurfacesofmaximalvolumewhichhavevanishingmeanextrinsiccurvature,K=0,whereKisthetraceoftheextrinsiccurvatureofthehypersurface.HereweshowthevanishingKisequivalenttothecondition(5).AccordingtoRef.[16],weusethecoordinates(2)andtakethespacelikehypersurfacesbyr=constant,sincethetimeandspaceareregardedasbeinginterchangedacrossthehorizonofaSchwarzschildblackhole.TakenasthefuturepointingtimelikeunitnormaltothehypersurfacesΣr,

n=

easytoconfirmthatg󰀋

∂r

+1∂v󰀆.

Itisµνnµnυ=−1forthecoordinates(2).ItisnotedthatthereisasimplerelationbetweenthedivergenceofthevectornandthetraceoftheextrinsiccurvaturetensorKµν,K=−▽·nwhere▽isthecovariantderivativewithrespecttothespacetimemetric.Withthegivenmetric(2),wehave

K=

1

󰀅∂f−fr󰀆=0,whichgivestheequationr=

3

hastobecountedforonecertainphase-spacewhichcanbelabeledherebyλ,θ,φ,pλ,pθ,pφ.Fromtheuncertaintyrelationofquantummechanics,∆xi∆pi∼2π,onequantumstatecor-respondstoa“cell”ofvolume(2π)3inthephase-space.Therefore,thenumberofquantumstatesisgivenby

dλdθdφdpλdpθdpφ

2

M.Forthemaximalslicing,

theslicesaccumulateonalimitinghypersurfacer=

3

−ggµν∂νΦ)=0,weobtain

2

E−

∂λ

1

r

∂φ

p22θ

1

,pθ=

∂I

.Thus,followingtheEq.(6),thenumberofquantumstates

5

withtheenergylessthanEisobtainedas

g(E)=

1

󰀊󰀋󰀇

󰀊

−f(r)v˙2+2v˙rdλdθdφ˙dλ󰀋

(9)

E2−

a2

1

=

(2π)

1

3

󰀅

E2−2π

1

r2sinθ

2

p2φdpθdpφ

12π212π2

VCR,

󰀋

p2

r2sin2θφ

wheretherelationpλ=

󰀉󰀉󰀌

theintegralformula

isusedinthesecondline,

finallinewehaveusedthecondition(5).Asexpected,thenumberofquantumstatesisproportionaltotheCRvolume,butthisisstilldifferentfromanormalsituation,becausetheCRvolumeistheresultofthecurvedspacetime.

TemporarilyignoringtheexoticfeatureofCRvolume,wecancontinuetocalculatethefreeenergyatsomeinversetemperatureβ,

F(β)=

1

y2

3

abisusedinthethirdline,andinthe

=−=−

VCR

eβE−1

eβE−1

π2VCR

∂β

=

π2VCR

dv

=−

1

whereγisaconstantwhosevaluedoesnotinfluencethediscussioninthepaper.InRef.[10],itisdiscussedthatthelargevolumeisremaineduntilthefinalstageofblackholeevaporation.Hereweareconcernedaboutthetimethattheradiationcanlast.Thus,forablackholewiththemassM,wehave

v∼γM3,

(13)

whichalsosatisfiestherequirementinRef.[7],v>>M.ThenusingtheEqs.(1)and(11),andconsideringthetemperatureforaSchwarzschildblackhole,β=T−1=8πM,onefindtheentropy

SCR∼󰀁3√(45×83)=(90󰀁3

√×84)π

A,(14)

whereA=16πM2isthesurfaceareaoftheSchwarzschildblackhole.ThisisasurprisingandintriguingresultthattheentropyfromquantumtheoryintheCRvolumeisproportionaltothesurfaceareaoftheblackholehorizonthatboundsthevolume.Notethattheresultisdependentonthevalidityoftherelation(12),whichwasshown[21]toholdsolongasthemassofaSchwarzschildblackholeisgreaterthanthePlanckmass.Moreover,theexactdescriptionoffinalstageofblackholeevaporationhasnotexisted,butsomespecificconsiderationssuchasGeneralUncertaintyRelation(i.e.seethereview[22])impliedthatatthefinalstage,thelossmassratebecomes

dM

4

.Thenanatural

problem:whatistheentropySCR?Whetheritwillbeincludedinthefirstlawofblackholethermodynamics.Inwhatfollows,wewilldiscussit.

IV.FIRSTLAWANDVACUUMPOLARIZATION

SincethederivationofCRvolumeisinthecaseofv>>M,whichmeanstheblackholehasformedbythecollapseofthematterandisstaticfortheexternalobservers.Thus,duetotheHawkingradiation,thefirstlawofblackholethermodynamicsreadsas

dM=TdSH,

(15)

wheretheentropySH=

1

processesarecompleted.ThechangeoftheentropySHisequivalenttothechangeofthesurfacearea,sotheentropySCRintheCRvolumewillbechanged.AlthoughourearlieranalysisshowsthattheentropySCRisproportionaltothesurfacearea,itsoriginalforminEq.(11)iscloselyrelatedtotheCRvolume.Soinequilibrium,thethermalprocessrequiresatermrelevanttothechangeofCRvolume.Accordingtothegeneralthermodynamics,suchtermshouldbewrittenasPdVCRwherePisthepressure.Thus,weexpectthatthefirstlawcanbewrittenas

dM=TdS−PdVCR,

(16)

whereS=SH+SCR.Inordertoremainthevalidityofthefirstlaw,arelationisrequired,TdSCR∼PdVCR.Now,thevitalproblemisthatfromwhereandhowmuchthepressureis,somestudiespointedoutthatthenonlocaleffectwillpreventtheblackholefromcollapsingintoaphysicalsingularity,i.e.seeRef.[24]).

IntheoriginalcalculationofHawking[11],theconceptofparticlesareusedintheasymp-toticallyflatregionfarfromtheblackholewheretheycanbeunambiguouslydefined.Whiletheparticlefluxcarriesawaythepositiveenergy,anaccompanyingfluxofnegativeenergygoesintotheholeacrossthehorizon,whichcanonlybeunderstoodbythezeropointfluc-tuationsoflocalenergydensityinthequantumtheory.Thisphenomena,calledalsoasvacuumpolarization,willplayanimportantroleintheneighborhoodoftheblackhole.Thevacuumpolarizationisusuallyconsideredinthesemi-classicalEinsteingravity,inwhichthefluctuationsofgravitationalfieldaresmallandsoistheexpectationvalueoftheenergy-momentumtensoroftherelevantquantizedfieldsinthechosenvacuumstate.Bycausedbythevacuumpolarizationisgivenby[25–28],

P=

1

M4

solvingthemodifiedEinsteinequation,Gµν=8π󰀉Tµν󰀊,thequantumpressureatthehorizonafterthecollapsedmatterhadbeenconcentratedintothesingularity(itisalsonotedthat

.

3

(17)

ItisnotedthattheCRvolumeiscalculatedforthehypersurfacer=

fromthecosmologicalconstant,i.e.seeRefs.[29–31],buttheyaredifferentfromourssincethecosmologicalconstantisnotinvolvedhere.ThetermPdVCRiscalculatedas

PdVCR

󰀁√53=dM,(90×84)π

(18)

whichisonthelevelof10−5fortheparameterbeforedM,andisverysmall,asexpected.ThetermTdSCRisalsoeasytobeestimatedas

󰀁√43−5

TdSCR=dM∼10dM.

(90×84)π

(19)

ItisseenthatthetermTdSCRisnotequalexactlytothetermPdVCR,butfundamentallytheycanbecanceledonthelevelof10−5.ThereasonisthatthevaluesofthepressurePandthetemperatureTisnotsoexactinthepresentconsideration.Actually,adirectevidencethatthethermodynamicsintheCRvolumeiscausedbyvacuumpolarizationisthatthetermPdVCRisnotdependentontheblackholeparameterM,asobtainedforthetermTdSCR.

Finally,itisnotedthatiftakingsuchatermVCRdP,asmadeinRefs.[29–31],itcanbalanceexactlythechangeofthermodynamicscausedbyTdSCR,butnoevidenceshowsthatwhythepressurehereshouldbechanged,sotheexactcancelationmightbeoccasional.Infact,vacuumpolarizationcausesthequantumcorrectiontotheusualblackholethermo-dynamics,sothecorrespondingthermodynamicvariableswouldbecorrected,whichisthereasonwhythetermsPdVCRandTdSCRcanceleachotheroutapproximately.

V.CONCLUSION

Inthepaper,wehaveinvestigatedtherelationbetweenthederivationofthevolumeofthespaceinsideaSchwarzschildblackholedefinedbyChristodoulouandRovelliandthemaximalslicing,andfoundexplicitlythattheCRvolumewasjustobtainedforthehypersurfacewhosemeanextrinsiccurvatureiszero.WehavealsocalculatedtheentropyintheCRvolumethroughcountingthenumberofquantumstatesinthevolumewithastandardstatisticalmethod.Differentlyfromthenormalsituation,theentropyassociatedwiththeCRvolumeisproportionaltothesurfaceareaoftheblackhole,buttheparameterismuchsmallerthanthatrequiredfortheBekenstein-Hawkingentropy.Thesmallparameter

9

hasalsobeeninterpretedinthepaper,fromtheperspectiveofblackholethermodynamics,forwhichasuggestiveresultisgiventhatthethermodynamicsassociatedwiththeentropyintheCRvolumeiscausedbythevacuumpolarizationnearthehorizon,sincethematterhascollapsedintothesingularitywhenweinvestigatethisphenomena.Thus,ourresultverifiesfurthertherelationbetweenblackholephysicsandquantumtheoryagain.

VI.ACKNOWLEDGE

TheauthorwouldliketothankProf.C.Rovelliforreadingthispaperandhispositivecomments.ThisworkissupportedbyGrantNo.11374330oftheNationalNaturalScienceFoundationofChinaandbyOpenResearchFundProgramoftheStateKeyLaboratoryofLow-DimensionalQuantumPhysicsandbytheFundamentalResearchFundsfortheCentralUniversities,ChinaUniversityofGeosciences(Wuhan)(CUG150630).

[1]M.K.Parikh,Phys.Rev.D73,124021(2006).[2]D.Grumiller,arXiv:0509077[gr-qc].

[3]B.S.DiNunnoandR.A.Matzner,Gen.Relativ.Gravi.42,63(2009).[4]W.BallikandK.Lake,arXiv:1005.1116[gr-qc].

[5]M.Cvetiˇc,G.W.Gibbons,D.Kubizn´ak,andC.N.Pope,Phys.Rev.D84,024037(2011).[6]W.BallikandK.Lake,Phys.Rev.D88,104038(2013).

[7]M.ChristodoulouandC.Rovelli,Phys.Rev.D91,0046(2015).[8]I.Bengtsson,E.Jakobsson,arXiv:1502.01907[gr-qc].[9]Y.C.Ong,JCAP04,003(2015).[10]Y.C.Ong,arXiv:1503.08245[gr-qc].

[11]S.W.Hawking,Nature248,30(1974);S.W.Hawking,Commun.Math.Phys.43,199(1975).[12]J.D.Bekenstein,Phys.Rev.D7,2333(1973).

[13]J.M.Bardeen,B.Carter,andS.W.Hawking,Commun.Math.Phys.31,161(1973).[14]J.E.MarsdenandF.J.Tipler,Phys.Rep.66109(1980).

[15]F.Estabrook,H.Wahlquist,S.Christensen,B.DeWitt,L.Smarr,andE.Tsiang,Phys.Rev.

D7,2814(1973).

10

[16]I.Cordero-Carri´on,J.M.Ib´an˜ez,andJ.A.Morales-Lladosa,J.Math.Phys.52,112501(2011).[17]V.P.FrolovandI.D.Novikov,BlackHolePhysics:BasicConceptsandNewDevelopments

(KluwerAcademicPublishers,Dordrecht,Netherlands,1998).[18]E.Gourgoulhon,arXiv:qr-qc/0703035

[19]B.Cowan,TopicsinStatisticalMechanics(RoyalHolloway,ImperialCollegePress,London,

UK,2005).

[20]S.M.Carroll,M.C.Johnson,andL.Randall,J.HighEnergyPhys.11(2009)094.[21]S.Massar,Phys.Rev.D52,5857(1995).

[22]S.Hossenfelder,LivingRev.Relativity16,2(2013).[23]L.Xiang,Phys.Lett.B0,9(2002).

[24]A.SainiandD.Stojkovic,Phys.Rev.D044003(2014).[25]W.G.Unruh,Phys.Rev.D14,870(1976).[26]P.Candelas,Phys.Rev.D21,2185(1980).[27]D.N.Page,Phys.Rev.D25,1499(1982).[28]T.Elster,Phys.Lett.A94,205(1983).

[29]D.Kastora,S.Rayb,andJ.Traschena,ClassicalQuantumGravity26,195011(2009).[30]B.P.Dolan,ClassicalQuantumGravity28,235017(2011).[31]D.KubiznakandR.B.Mann,arXiv:1404.2126.

11

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo6.com 版权所有 湘ICP备2023023988号-11

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务