BaochengZhang∗
SchoolofMathematicsandPhysics,
ChinaUniversityofGeosciences,Wuhan430074,China
Abstract
Basedonarecentproposalforthevolumeinsideablackhole,wecalculatetheentropyassociatedwiththisvolumeandshowthatsuchentropyisproportionaltothesurfaceareaoftheblackhole.Togetherwiththeconsiderationofblackholeradiation,wefindthatthethermodynamicsassociatedwiththeentropyishighlypossibletobecausedbythevacuumpolarizationnearthehorizon.
I.INTRODUCTION
Howbigisablackhole?Thisisnotaneasyquestion,sincethedefinitionofthevolumeofthespaceinsideablackholedependsonhowthespacetimeisslicedintospaceandtime,unlikethesurfaceareaoftheblackholethatisthesameforallobservers.Intuitively,anicedescriptionforthevolumeshouldbeslicinginvariant,whichwasmadefirstlybyParikh[1]andalsodiscussedbyothers[2–6].Recently,adifferentmethodwassuggestedbyChristodoulouandRovelli[7]basedonasimpleobservationthattheinteriorofSchwarzschildblackholesisnotstatic,whichleadedtoanothersensibledescriptionforthevolumeasthelargestvolumeboundedbytheeventhorizonofablackhole.ForaSchwarzschildblackhole,theyshowedthatatlatetimethevolumetooksuchanexpression,
VCR∼3
√
Thestructureofthepaperisasfollows.Firstly,wewillrevisitthedefinitionofthevolumeinsideablackholebyChristodoulouandRovelli,andpresentexplicitlythechoiceofthemaximalhypersurfaces[14]bymaximalslicing[15,16]inthesecondsection.Then,wecalculatetheentropyinthevolumeusingthestandardstatisticalmethodinthethirdsection.Intheforthsection,wediscussthefirstlawofblackholethermodynamics,inparticularforthenewlyobtainedentropy,whichisrelatedtothevacuumpolarization[17]nearthehorizonoftheblackhole.Finally,wewillgiveaconclusioninthefivesection.
II.BLACKHOLEVOLUMEANDMAXIMALSLICING
StartwiththegeometryofacollapsedobjectasinRef.[7],whichcanbedescribedwiththeEddington-Finkelsteincoordinates,
ds2=−f(r)dv2+2dvdr+r2dθ2+r2sin2θdφ2
wheref(r)=1−
2M
f(r)
(2)
=t+r+2Mln|r−2M|.In
particular,wehavetakentheunitsG=c==kB=1.Theadvantageofthecoordinatesoverthestaticoneisthatthereisnocoordinatesingularityattheeventhorizon.Thusitcanbeanalyticallycontinuedtoallr>0,whichisrequiredforthedescriptionofthegeometryofthecollapsedmatter.
Inordertocalculatethevolume,aproperhypersurfacehastobechosen.
With
antransformationv→v(T,λ),r→r(T,λ),thecoordinates(2)becomesds2=∂v2
∂r∂v
−f+2∂λdλ2+r2dθ2+r2sin2θdφ2wherewehave∂T∂λ
assumedthecrosstermvanishesbytakingthetransformationproperly.Inparticular,ifthe
∂v
∂r√condition−f∂TthehypersurfaceΣ:T=constant,isthatchoseninRef.[7]wherethesphericallysymmetric
−fdTwhichalsoremovesthecrosstermsimultaneously)isenforced,onewillfindthat
hypersurfaceistakenasthedirectproductofa2-sphereandanarbitrarycurveparameter-izedbyλinv-rplane.Inparticular,itisnotedthatthehypersurfaceT=constantisable
√
tobegottenbyr=constantaccordingtothetransformationdr=
wherethedotrepresentsthepartialderivativewithregardtotheparameterλ,and−f(r)v˙2+2v˙r˙>0forthespacelikehypersurface.Themaximalvolumecanbeobtainedbytheintegral,
VΣ=4πdλ
2
M,(5)
which,togetherwithEq.(4),givestheCRvolumeexpressedinEq.(1).
Ontheotherhand,themaximizationcanalsobecalculatedinmathematicalrelativity[18]whereamethodcalledasmaximalslicingcanleadtohypersurfacesofmaximalvolumewhichhavevanishingmeanextrinsiccurvature,K=0,whereKisthetraceoftheextrinsiccurvatureofthehypersurface.HereweshowthevanishingKisequivalenttothecondition(5).AccordingtoRef.[16],weusethecoordinates(2)andtakethespacelikehypersurfacesbyr=constant,sincethetimeandspaceareregardedasbeinginterchangedacrossthehorizonofaSchwarzschildblackhole.TakenasthefuturepointingtimelikeunitnormaltothehypersurfacesΣr,
n=
easytoconfirmthatg
∂r
+1∂v.
Itisµνnµnυ=−1forthecoordinates(2).ItisnotedthatthereisasimplerelationbetweenthedivergenceofthevectornandthetraceoftheextrinsiccurvaturetensorKµν,K=−▽·nwhere▽isthecovariantderivativewithrespecttothespacetimemetric.Withthegivenmetric(2),wehave
K=
1
∂f−fr=0,whichgivestheequationr=
3
hastobecountedforonecertainphase-spacewhichcanbelabeledherebyλ,θ,φ,pλ,pθ,pφ.Fromtheuncertaintyrelationofquantummechanics,∆xi∆pi∼2π,onequantumstatecor-respondstoa“cell”ofvolume(2π)3inthephase-space.Therefore,thenumberofquantumstatesisgivenby
dλdθdφdpλdpθdpφ
2
M.Forthemaximalslicing,
theslicesaccumulateonalimitinghypersurfacer=
3
√
−ggµν∂νΦ)=0,weobtain
2
E−
∂λ
1
r
∂φ
p22θ
−
1
,pθ=
∂I
.Thus,followingtheEq.(6),thenumberofquantumstates
5
withtheenergylessthanEisobtainedas
g(E)=
1
−f(r)v˙2+2v˙rdλdθdφ˙dλ
(9)
E2−
a2
1
=
(2π)
1
3
E2−2π
1
r2sinθ
2
p2φdpθdpφ
12π212π2
4π
VCR,
p2
r2sin2θφ
wheretherelationpλ=
theintegralformula
isusedinthesecondline,
finallinewehaveusedthecondition(5).Asexpected,thenumberofquantumstatesisproportionaltotheCRvolume,butthisisstilldifferentfromanormalsituation,becausetheCRvolumeistheresultofthecurvedspacetime.
TemporarilyignoringtheexoticfeatureofCRvolume,wecancontinuetocalculatethefreeenergyatsomeinversetemperatureβ,
F(β)=
1
−
y2
3
abisusedinthethirdline,andinthe
=−=−
VCR
eβE−1
eβE−1
π2VCR
∂β
=
π2VCR
dv
=−
1
whereγisaconstantwhosevaluedoesnotinfluencethediscussioninthepaper.InRef.[10],itisdiscussedthatthelargevolumeisremaineduntilthefinalstageofblackholeevaporation.Hereweareconcernedaboutthetimethattheradiationcanlast.Thus,forablackholewiththemassM,wehave
v∼γM3,
(13)
whichalsosatisfiestherequirementinRef.[7],v>>M.ThenusingtheEqs.(1)and(11),andconsideringthetemperatureforaSchwarzschildblackhole,β=T−1=8πM,onefindtheentropy
SCR∼3√(45×83)=(903
√×84)π
A,(14)
whereA=16πM2isthesurfaceareaoftheSchwarzschildblackhole.ThisisasurprisingandintriguingresultthattheentropyfromquantumtheoryintheCRvolumeisproportionaltothesurfaceareaoftheblackholehorizonthatboundsthevolume.Notethattheresultisdependentonthevalidityoftherelation(12),whichwasshown[21]toholdsolongasthemassofaSchwarzschildblackholeisgreaterthanthePlanckmass.Moreover,theexactdescriptionoffinalstageofblackholeevaporationhasnotexisted,butsomespecificconsiderationssuchasGeneralUncertaintyRelation(i.e.seethereview[22])impliedthatatthefinalstage,thelossmassratebecomes
dM
4
.Thenanatural
problem:whatistheentropySCR?Whetheritwillbeincludedinthefirstlawofblackholethermodynamics.Inwhatfollows,wewilldiscussit.
IV.FIRSTLAWANDVACUUMPOLARIZATION
SincethederivationofCRvolumeisinthecaseofv>>M,whichmeanstheblackholehasformedbythecollapseofthematterandisstaticfortheexternalobservers.Thus,duetotheHawkingradiation,thefirstlawofblackholethermodynamicsreadsas
dM=TdSH,
(15)
wheretheentropySH=
1
processesarecompleted.ThechangeoftheentropySHisequivalenttothechangeofthesurfacearea,sotheentropySCRintheCRvolumewillbechanged.AlthoughourearlieranalysisshowsthattheentropySCRisproportionaltothesurfacearea,itsoriginalforminEq.(11)iscloselyrelatedtotheCRvolume.Soinequilibrium,thethermalprocessrequiresatermrelevanttothechangeofCRvolume.Accordingtothegeneralthermodynamics,suchtermshouldbewrittenasPdVCRwherePisthepressure.Thus,weexpectthatthefirstlawcanbewrittenas
dM=TdS−PdVCR,
(16)
whereS=SH+SCR.Inordertoremainthevalidityofthefirstlaw,arelationisrequired,TdSCR∼PdVCR.Now,thevitalproblemisthatfromwhereandhowmuchthepressureis,somestudiespointedoutthatthenonlocaleffectwillpreventtheblackholefromcollapsingintoaphysicalsingularity,i.e.seeRef.[24]).
IntheoriginalcalculationofHawking[11],theconceptofparticlesareusedintheasymp-toticallyflatregionfarfromtheblackholewheretheycanbeunambiguouslydefined.Whiletheparticlefluxcarriesawaythepositiveenergy,anaccompanyingfluxofnegativeenergygoesintotheholeacrossthehorizon,whichcanonlybeunderstoodbythezeropointfluc-tuationsoflocalenergydensityinthequantumtheory.Thisphenomena,calledalsoasvacuumpolarization,willplayanimportantroleintheneighborhoodoftheblackhole.Thevacuumpolarizationisusuallyconsideredinthesemi-classicalEinsteingravity,inwhichthefluctuationsofgravitationalfieldaresmallandsoistheexpectationvalueoftheenergy-momentumtensoroftherelevantquantizedfieldsinthechosenvacuumstate.Bycausedbythevacuumpolarizationisgivenby[25–28],
P=
1
M4
solvingthemodifiedEinsteinequation,Gµν=8πTµν,thequantumpressureatthehorizonafterthecollapsedmatterhadbeenconcentratedintothesingularity(itisalsonotedthat
.
3
(17)
ItisnotedthattheCRvolumeiscalculatedforthehypersurfacer=
fromthecosmologicalconstant,i.e.seeRefs.[29–31],buttheyaredifferentfromourssincethecosmologicalconstantisnotinvolvedhere.ThetermPdVCRiscalculatedas
PdVCR
√53=dM,(90×84)π
(18)
whichisonthelevelof10−5fortheparameterbeforedM,andisverysmall,asexpected.ThetermTdSCRisalsoeasytobeestimatedas
√43−5
TdSCR=dM∼10dM.
(90×84)π
(19)
ItisseenthatthetermTdSCRisnotequalexactlytothetermPdVCR,butfundamentallytheycanbecanceledonthelevelof10−5.ThereasonisthatthevaluesofthepressurePandthetemperatureTisnotsoexactinthepresentconsideration.Actually,adirectevidencethatthethermodynamicsintheCRvolumeiscausedbyvacuumpolarizationisthatthetermPdVCRisnotdependentontheblackholeparameterM,asobtainedforthetermTdSCR.
Finally,itisnotedthatiftakingsuchatermVCRdP,asmadeinRefs.[29–31],itcanbalanceexactlythechangeofthermodynamicscausedbyTdSCR,butnoevidenceshowsthatwhythepressurehereshouldbechanged,sotheexactcancelationmightbeoccasional.Infact,vacuumpolarizationcausesthequantumcorrectiontotheusualblackholethermo-dynamics,sothecorrespondingthermodynamicvariableswouldbecorrected,whichisthereasonwhythetermsPdVCRandTdSCRcanceleachotheroutapproximately.
V.CONCLUSION
Inthepaper,wehaveinvestigatedtherelationbetweenthederivationofthevolumeofthespaceinsideaSchwarzschildblackholedefinedbyChristodoulouandRovelliandthemaximalslicing,andfoundexplicitlythattheCRvolumewasjustobtainedforthehypersurfacewhosemeanextrinsiccurvatureiszero.WehavealsocalculatedtheentropyintheCRvolumethroughcountingthenumberofquantumstatesinthevolumewithastandardstatisticalmethod.Differentlyfromthenormalsituation,theentropyassociatedwiththeCRvolumeisproportionaltothesurfaceareaoftheblackhole,buttheparameterismuchsmallerthanthatrequiredfortheBekenstein-Hawkingentropy.Thesmallparameter
9
hasalsobeeninterpretedinthepaper,fromtheperspectiveofblackholethermodynamics,forwhichasuggestiveresultisgiventhatthethermodynamicsassociatedwiththeentropyintheCRvolumeiscausedbythevacuumpolarizationnearthehorizon,sincethematterhascollapsedintothesingularitywhenweinvestigatethisphenomena.Thus,ourresultverifiesfurthertherelationbetweenblackholephysicsandquantumtheoryagain.
VI.ACKNOWLEDGE
TheauthorwouldliketothankProf.C.Rovelliforreadingthispaperandhispositivecomments.ThisworkissupportedbyGrantNo.11374330oftheNationalNaturalScienceFoundationofChinaandbyOpenResearchFundProgramoftheStateKeyLaboratoryofLow-DimensionalQuantumPhysicsandbytheFundamentalResearchFundsfortheCentralUniversities,ChinaUniversityofGeosciences(Wuhan)(CUG150630).
[1]M.K.Parikh,Phys.Rev.D73,124021(2006).[2]D.Grumiller,arXiv:0509077[gr-qc].
[3]B.S.DiNunnoandR.A.Matzner,Gen.Relativ.Gravi.42,63(2009).[4]W.BallikandK.Lake,arXiv:1005.1116[gr-qc].
[5]M.Cvetiˇc,G.W.Gibbons,D.Kubizn´ak,andC.N.Pope,Phys.Rev.D84,024037(2011).[6]W.BallikandK.Lake,Phys.Rev.D88,104038(2013).
[7]M.ChristodoulouandC.Rovelli,Phys.Rev.D91,0046(2015).[8]I.Bengtsson,E.Jakobsson,arXiv:1502.01907[gr-qc].[9]Y.C.Ong,JCAP04,003(2015).[10]Y.C.Ong,arXiv:1503.08245[gr-qc].
[11]S.W.Hawking,Nature248,30(1974);S.W.Hawking,Commun.Math.Phys.43,199(1975).[12]J.D.Bekenstein,Phys.Rev.D7,2333(1973).
[13]J.M.Bardeen,B.Carter,andS.W.Hawking,Commun.Math.Phys.31,161(1973).[14]J.E.MarsdenandF.J.Tipler,Phys.Rep.66109(1980).
[15]F.Estabrook,H.Wahlquist,S.Christensen,B.DeWitt,L.Smarr,andE.Tsiang,Phys.Rev.
D7,2814(1973).
10
[16]I.Cordero-Carri´on,J.M.Ib´an˜ez,andJ.A.Morales-Lladosa,J.Math.Phys.52,112501(2011).[17]V.P.FrolovandI.D.Novikov,BlackHolePhysics:BasicConceptsandNewDevelopments
(KluwerAcademicPublishers,Dordrecht,Netherlands,1998).[18]E.Gourgoulhon,arXiv:qr-qc/0703035
[19]B.Cowan,TopicsinStatisticalMechanics(RoyalHolloway,ImperialCollegePress,London,
UK,2005).
[20]S.M.Carroll,M.C.Johnson,andL.Randall,J.HighEnergyPhys.11(2009)094.[21]S.Massar,Phys.Rev.D52,5857(1995).
[22]S.Hossenfelder,LivingRev.Relativity16,2(2013).[23]L.Xiang,Phys.Lett.B0,9(2002).
[24]A.SainiandD.Stojkovic,Phys.Rev.D044003(2014).[25]W.G.Unruh,Phys.Rev.D14,870(1976).[26]P.Candelas,Phys.Rev.D21,2185(1980).[27]D.N.Page,Phys.Rev.D25,1499(1982).[28]T.Elster,Phys.Lett.A94,205(1983).
[29]D.Kastora,S.Rayb,andJ.Traschena,ClassicalQuantumGravity26,195011(2009).[30]B.P.Dolan,ClassicalQuantumGravity28,235017(2011).[31]D.KubiznakandR.B.Mann,arXiv:1404.2126.
11
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo6.com 版权所有 湘ICP备2023023988号-11
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务