解:算式中的加法看来无法用数学课中学过的简算方法计算,但是,这几个数每个数只要增加一点,就成为某个整十、整百或整千数,把这几个数“凑整”以后,就容易计算了。当然要记住,“凑整”时增加了多少要减回去。
9.996+29.98+169.9+3999.5
=10+30+170+4000-(0.004+0.02+0.1+0.5)
=4210-0.624
=4209.376
例2:计算:1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01
解:式子的数是从1开始,依次减少0.01,直到最后一个数是0.01,因此,式有100个数而式子中的运算都是两个数相加接着减两个数,再加两个数,再减两个数……这样的顺序排列的。
由于数的排列、运算的排列都很有规律,按照规律可以考虑每4个数为一组添上括号,每组数的运算结果是否也有一定的规律?可以看到把每组数中第1个数减第3个数,第2个数减第4个数,各得0.02,合起来是0.04,那么,每组数(即每个括号)运算的结果都是0.04,整个算式100个数正好分成25组,它的结果就是25个0.04的和。
1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01
=(1+0.99-0.98-0.97)+(0.96+0.95-0.94-0.93)+…+(0.04+0.03-0.02-0.01)
=0.04×25 =1
如果能够灵活地运用数的交换的规律,也可以按下面的方法分组添上括号计算:
1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01
=1+(0.99-0.98-0.97+0.96)+(0.95-0.94-0.93+0.92)+…+(0.03-0.02-0.01) =1
例3:计算:0.1+0.2+0.3+…+0.8+0.9+0.10+0.11+0.12+…+0.19+0.20
解:这个算式的数的排列像一个等差数列,但仔细观察,它实际上由两个等差数列组成,0.1+0.2+0.3+…+0.8+0.9是第一个等差数列,后面每一个数都比前一个数多0.1,而0.10+0.11+0.12+…+0.19+0.20是第二个等差数列,后面每一个数都比前一个数多0.01,所以,应分为两段按等差数列求和的方法来计算。
0.1+0.2+0.3+…+0.8+0.9+0.10+0.11+0.12+…+0.19+0.20
=(0.1+0.9)×9÷2+(0.10+0.20)×11÷2
=4.5+1.65
=6.15
例4:计算:9.9×9.9+1.99
解:算式中的9.9×9.9两个因数中一个因数扩大10倍,另一个因数缩小10倍,积不变,即这个乘法可变为99×0.99;1.99可以分成0.99+1的和,这样变化以后,计算比较简便。
9.9×9.9+1.99
=99×0.99+0.99+1
=(99+1)×0.99+1
=100
例5:计算:2.437×36.+243.7×0.6346
解:虽然算式中的两个乘法计算没有相同的因数,但前一个乘法的2.437和后一个乘法
的243.7两个数的数字相同,只是小数点的位置不同,如果把其中一个乘法的两个因数的小数点按相反方向移动同样多位,使这两个数变成相同的,就可以运用乘法分配律进行简算了。
2.437×36.+243.7×0.6346
=2.437×36.+2.437×63.46
=2.437×(36.+63.46)
=243.7
解:算式中的几个数虽然是一个等差数列,但算式不是求和,不能用等差数列求和的方法来计算这个算式的结果。
平时注意积累计算经验的同学也许会注意到7、11和13这三个数连乘的积是1001,而一个三位数乘1001,只要把这个三位数连续写两遍就是它们的积,例如578×1001=578578,这一题参照这个方法计算,能巧妙地算出正确的得数。
1.1×1.2×1.3×1.4×1.5
=1.1×1.3×0.7×2×1.2×1.5
=1.001×3.6
=3.6036
1.5.467+3.814+7.533+4.186
2.6.25×1.25×6.4
3.3.997+19.96+1.9998+199.7
4.0.1+0.3+…+0.9+0.11+0.13+0.15+…+0.97+0.99
5.199.9×19.98-199.8×19.97
6.23.75×3.987+6.013×92.07+6.832×39.87
1.6.734-1.536+3.266-4.4
2.0.8÷0.125
3..1+90.3+88.6+92.1+88.9+90.8
4.4.83×0.59+0.41×1.59-0.324×5.9
5.37.5×21.5×0.112+35.5×12.5×0.112 四.应用题
1.一片均匀生长的草地,可以供18头牛吃40天,或者供12头牛与36只羊吃25天,如果1头牛每天的吃草量相当于3只羊每天的吃草量。请问:这片草地让17头牛与多少只羊一起吃,刚好16天吃完?
答案:一头牛每天吃草的量看成“1”,把36只羊看成12头牛,所以24头牛可以吃25天。 所以草每天长的量=(18×40-24×25)÷(40-25)=8,也就是说一天长的草量可以供8头牛吃一天。
原有的草量=18×40-8×40=400
所以原有的草可以供多少牛吃16天:400÷16=25头,而生长的草可以供8头牛,所以16天可以供25+8=33头牛吃,现在又17头牛,还要16头牛,换成羊是16×3=48只
2. 一位旅行者,在路上共走了110个小时,坐火车,骑马,骑自行车各走了全程的三分之一.骑
马的速度是坐火车的八分之一,是骑自行车的的四分之一.请问,他坐火车,骑自行车,骑马各走了多少时间?? 由题设可列图:
110小时
┌——————————┴——————————┐ ┗━┻━┻━┻━┻━┻━┻━┻━┻━┻━┻━┛ └┬┴—┬—┴———————┬———————┘ 坐火车 骑自行车 骑马 “1” “2” “8”
则坐火车的时间是:110÷(1+2+8)=10(小时); 骑自行车的时间是:10×2=20(小时); 骑马的时间是:10×8=80(小时)。
3. 1.一块长1米20厘米,宽90厘米的铝皮,剪成直径30厘米的圆片,最多可以剪几块?
分析:此题不需求面积的。只需求长和宽各是圆的直径的几倍,然后求出长和宽的倍数的积。
1米20厘米=120厘米 120÷30=4 90÷30=3 4×3=12(块)
答:最多可以剪12块。
2.一个圆柱,底面半径1分米,它的侧面展开是一个正方形。这个圆柱的表面积和体积是多少?
分析:从侧面展开图正方形入手,可知这个圆柱的高是圆柱的底面周长。 圆柱的表面积:
(3.14×1×2)×(3.14×1×2)+3.14×1×1×2 =6.28×6.28+6.28 =6.28×7.28
=45.7184(平方分米) 圆柱的体积:
3.14×1×1×(3.14×1×2)
=3.14×6.28
=19.7192(平方分米)
答:这个圆柱的表面积是45.7184平方分米,体积是19.7192平方分米。 3.一列火车上午8时从甲站开出,到第二天的晚上9时到达乙站。已知火车平均每小时行98千米。甲乙两站间的铁路长多少千米? 分析:这题的解题关键是要知道火车行驶的时间。 24-8+9=25(小时)[或者:12-8+12+9=25(小时)] 98×25=(100-2)×25 =2500-50
=2450(千米)
答:甲乙两站间的铁路长2450千米。
4.一个圆和一个扇形的半径相等。已知圆的面积是30平方厘米,扇形的圆心角是72度。求扇形的面积。
分析:因为圆和扇形的半径相等,圆和扇形的面积存要在倍数关系。这个倍数就是它们圆心角之间的倍数关系。 72÷360=1/5,30×1/5=6(平方厘米) 答:扇形的面积是6平方厘米。
第11题:一个半径3厘米的圆,在圆中画一个扇形,使它的面积占圆面积的20%,并且算出这个扇形的面积。 分析:此题与上题的思路一样。 3.14×3×3×20%=5.652(平方厘米)
答:这个扇形的面积是5.652平方厘米。
5.学校把植树任务按5:3分给六年级和五年级。六年级实际栽了108棵,超过原分配任务的20%。原计划五年级栽树多少棵?
分析:六年级原计划栽树的棵数是解题的关键。 1、六年级原计划栽树多少棵?
108÷(1+20%)=108×5/6=90(棵) 2、原计划五年级栽树多少棵? 90÷5×3=(棵) 综合算式:
108÷(1+20%)÷5×3 =90÷5×3 =(棵)
答:原计划五年级栽树棵。
6.甲乙两面个工程队全修一段公路,甲队的工作效率是乙队的3/5。两队合修6天正好完成这段公路的2/3,余下的由乙队单独修,还要几天才能修完? 分析:求两队的工效是解题的关键。 1、两队的工效和是多少? 2/3÷6=1/9
2、乙队的工效是多少? 1/9×[5÷(3+5)] =1/9×5/8
=5/72
3、还要几天才能修完? (1-2/3)÷5/72 =1/3×72/5 =24/5(天)
答:还要24/5天才能修完。
7.某水泥厂去年生产水泥232400吨,今年头5个月的产量就等于去年全年的产量。照这样计算,这个水泥厂今年将比去年增产百分之几?
解法一:分析,今年后7个月的产量就是增产的,因此我们要先求出后7个月生产量。
232400÷5×(12-5) =480×7
=325360(吨)
325360÷232400=1、4=140%
解法二:把232400吨看作单位“1”,
1、今年平均每月生产量是去年的几分之几? 1÷5=1/5
2、今年比去年增产几分之几? 1/5×(12-5)=7/5
3、今年比去年增产百分之几?
7/5=1.4=140%
综合算式:1÷5×(12-5)=1.4=140% 答:这个厂今年比去年增产140%。
8.幼儿园买进大小两种毛巾各40条,共用258.8元。大毛巾的单价比小毛巾单价的2倍多0.11元。这两种毛巾单价各是多少元?
解:设小毛巾的单价是x元,则大毛巾的单价是(2x+0.11)元。 [x+(2x+0.11)]×40=258.8 3x=6.47-0.11 x=6.36÷3 x=2.12
2x+0.11=2.12×2+0.11 =4.35
答:大毛巾的单价是每条4.35元,小毛巾的单价是每条2.12元。
9. 一间长4、8米、宽3、6米的房间,用边长0、15米的正方形瓷砖铺地面,需要768块。在长6米、宽4、8米的房间里,如果用同样的瓷砖来铺,需要多少块?如果在第一个房间改铺边长0、2米的正方形瓷砖,要用多少块?(用比例解)
分析:房间的面积是一定的,每块砖的面积和块数成反比例。 解:设需要x块。 0.15×0.15x =6×4.8 x =6×4.8÷0.15÷0.15 x =1280
答:需要1280块。
解:设需要y块。 0.2×0.2y=4.8×3.6 y=4.8×3.6÷0.2÷0.2 y=432
答:需要432块。
10.一艘轮船所带的柴油最多可以用6小时。驶出时顺风,每小时行驶30千米。驶回时逆风,每小时行驶的路程是顺风时的4/5。这艘轮船最多驶出多远应往回驶?
分析:轮船行驶的路程一定,每小时行驶的路程和时间成反比例。 解:设这艘轮船逆风行驶了x小时。 30×4/5x=30×(6-x) 4/5x=6-x 9/5x=6 x=10/3
30×4/5×10/3=80(千米)
答:这艘轮船最多驶出80千米就应往回驶。
11. 一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,这时距离乙地还有94千米。甲乙两地的公路长多少千米? 分析:“从第二小时比第一小时多行了16千米”可知第二小时行了全程的1/7和16千米。第一小时和第二小时共行全程的(1/7+1/7)和16千米。由此可知(96+16)占全程的(1-1/7-1/7)。 根据上面的分析得:
(96+16)÷(1-1/7-1/7) =112÷5/7 =112×7/5
=156、8(千米)
答:甲乙两地的公路长156、8千米。 或者用方程解:
解:设甲乙两地的公路长x千米。 (1-1/7-1/7)x=96+16 5/7x=112 x=156、8
答:甲乙两地的公路长156、8千米。
题目改编:若这题中的一个条件改成“这时距离甲地96千米”,其它条件不变,问题也不变。如何解答?
12.一个编织组,原来30人10天生产1500只花篮。现在增加到80人,按原来的工效,生产6000只花篮需要多少天?(用比例解答)
分析:题中说“按原来的工效”,这说明这个纺织组的工作效率是一定的。工作效率一定,工作总量和工作时间成正比例。 解:设需要x天。
1500:(30×50)=6000:(80×x) 1500×(80×x)=6000×(30×50) x=6000×30×50÷80÷1500 x=6000÷80 x=75
答:需要75天。
13.红光农场有两块麦田,第一块5.5公顷,共收小麦27.3吨,第二块3.6公顷,共收小麦18.2吨,这两块麦田平均每公顷收小麦多少吨?
14. 一辆汽车在山区行驶,上山用了3小时,平均每小时行30千米,下山行完同样的路程,只用了2小时,求这辆汽车上山,下山的平均速度.
15. 甲乙二人同时从同一地点向相反方向背向而行,甲每小时行驶15千米,乙
每小时行驶12千米,4.5小时两人相距多少千米?甲比乙多走多少千米?
16. 服装厂计划做1470套服装,已经做了5天,平均每天做150套,剩下的要4.5天完成,剩下的平均每天比原来每天多做多少套?
17. 每套童装用布2.5米,每套成人服装用布4米,现在要做童装5套,成人服装3套,共有布30米,还可以剩下多少米布?如果每条裤子用布1.1米,剩下的这些布可做裤子多少条?
18.超市开展矿泉水“买5送1”的活动。一个旅游团有48人,想每人发一瓶矿泉水,需要购买多少瓶水就够了?
(买5送1 的意思是要6瓶矿泉水只需要买5瓶,48里有8个6,所以只需要8个5就可以了,答案是40瓶。)
19. 一个小数部分是两位的小数,用四舍五入法把它精确到0.1,它的近似值是5.0,那么这个两位小数是什么?
(解析:所求的两位小数是:4.95,4.96,4.97,4.98,4.99,5.00,5.01,5.02,5.03,5.04
20. 一只底面是正方形的长方体铁箱,如果把它的侧面展开,正好得到一个边长是40cm的正方形.求这只铁箱的容积是多少升? 《 40÷4=10 10×10×40÷1000=4》
回答者: cyg2436 - 高级经理 七级 1-12 15:16 小学5年级奥数题选
填空题
1.计算:0.02+0.04+0.06+0.08+……+19.94+19.96+19.98=________。
2.1×1+2×2+3×3+……1997×1997+1998×1998的个位数字是________。
3.一个两位数,在它的两个数字中间添一个0,就比原来的数多630,这样的两位数共有_______个。
4.现有壹元的人民币4张,贰元的人民币2张,拾元的人民币3张,如果从中至少取1张,至多取9张,那么,共可以配成_______种不同的钱数。
5.一组四位数,每一个数的数字均不为0,并且互不相同,但每个数所有的数字和都为12,将所有这样的四位数从小到大依次排列,第25个数是_______。
6.大猴给小猴分桃子,如果每只小猴分8个桃子,还剩10桃子;如果每只小猴
分9个桃子,那么有一只小猴就分不足9个,但仍可以分到桃子,小
8.有一栋居民楼,每家都订2份不同的报纸,该居民楼共订了三种报纸。其中《南通广播电视报》34份,《扬子晚报》30份,《报刊文摘》22份。那么,订《扬子晚报》和《报刊文摘》的共有_______家。
9.强强、芳芳两人在相距120米的直路上来回跑步,强强每秒跑2米,芳芳每秒跑3米。如果两人同时从两端点出发,那么15分钟内他们共相遇_______次。
10.某车间加工一批零件,计划每天加工48个,实际每天比计划多加工12个,结果提前5天完成任务。这批零件共有_______个。
(小数报427期改编)
11.李、孙、王三人今年年龄之和为113岁,王38岁时,孙的年龄是李的2倍,李17岁时,王的年龄是孙的2倍,孙今年_______岁。
(小数报492期,98—9—18)
(小数报475期)
13.有16把锁和20把钥匙,其中20把钥题中的16把是和16把锁一一配对的,但现在锁和钥匙弄乱了。那么,至少需要试_______次才能确保锁和钥匙都配对起来。
(小数报457期,改编)
(小数报475期98—4—10改编)
15.甲、乙、丙、丁四名学生参加南通市小学生数学竞赛。赛前,三位老师进行预测:
一位老师说:丙第一名,甲第二名;
另一位老师说:乙第一名,丁第四名;
还有一位老师:丁第二名,丙第三名。
评论(20)|3580
abc2139613 |四级采纳率14%
擅长:学习帮助QQ音速教育/科学数学物理学 按默认排序|按时间排序
其他2条回答
2009-01-12 15:16cyg2436|十三级
1.一块长1米20厘米,宽90厘米的铝皮,剪成直径30厘米的圆片,最多可以剪几块?
分析:此题不需求面积的。只需求长和宽各是圆的直径的几倍,然后求出长和宽的倍数的积。 1米20厘米=120厘米 120÷30=4 90÷30=3 4×3=12(块)
答:最多可以剪12块。
2.一个圆柱,底面半径1分米,它的侧面展开是一个正方形。这个圆柱的表面积和体积是多少?
分析:从侧面展开图正方形入手,可知这个圆柱的高是圆柱的底面周长。 圆柱的表面积:
(3.14×1×2)×(3.14×1×2)+3.14×1×1×2 =6.28×6.28+6.28 =6.28×7.28
=45.7184(平方分米) 圆柱的体积:
3.14×1×1×(3.14×1×2) =3.14×6.28
=19.7192(平方分米)
答:这个圆柱的表面积是45.7184平方分米,体积是19.7192平方分米。 3.一列火车上午8时从甲站开出,到第二天的晚上9时到达乙站。已知火车平均每小时行98千米。甲乙两站间的铁路长多少千米? 分析:这题的解题关键是要知道火车行驶的时间。 24-8+9=25(小时)[或者:12-8+12+9=25(小时)] 98×25=(100-2)×25 =2500-50
=2450(千米)
答:甲乙两站间的铁路长2450千米。
4.一个圆和一个扇形的半径相等。已知圆的面积是30平方厘米,扇形的圆心角
是72度。求扇形的面积。
分析:因为圆和扇形的半径相等,圆和扇形的面积存要在倍数关系。这个倍数就是它们圆心角之间的倍数关系。 72÷360=1/5,30×1/5=6(平方厘米)
答:扇形的面积是6平方厘米。
第11题:一个半径3厘米的圆,在圆中画一个扇形,使它的面积占圆面积的20%,并且算出这个扇形的面积。 分析:此题与上题的思路一样。 3.14×3×3×20%=5.652(平方厘米) 答:这个扇形的面积是5.652平方厘米。
5.学校把植树任务按5:3分给六年级和五年级。六年级实际栽了108棵,超过原分配任务的20%。原计划五年级栽树多少棵? 分析:六年级原计划栽树的棵数是解题的关键。 1、六年级原计划栽树多少棵? 108÷(1+20%)=108×5/6=90(棵) 2、原计划五年级栽树多少棵? 90÷5×3=(棵) 综合算式:
108÷(1+20%)÷5×3 =90÷5×3 =(棵)
答:原计划五年级栽树棵。
6.甲乙两面个工程队全修一段公路,甲队的工作效率是乙队的3/5。两队合修6天正好完成这段公路的2/3,余下的由乙队单独修,还要几天才能修完? 分析:求两队的工效是解题的关键。 1、两队的工效和是多少? 2/3÷6=1/9
2、乙队的工效是多少? 1/9×[5÷(3+5)] =1/9×5/8 =5/72
3、还要几天才能修完? (1-2/3)÷5/72 =1/3×72/5 =24/5(天)
答:还要24/5天才能修完。
7.某水泥厂去年生产水泥232400吨,今年头5个月的产量就等于去年全年的产量。照这样计算,这个水泥厂今年将比去年增产百分之几?
解法一:分析,今年后7个月的产量就是增产的,因此我们要先求出后7个月生产量。
232400÷5×(12-5)
=480×7
=325360(吨)
325360÷232400=1、4=140% 解法二:把232400吨看作单位“1”, 1、今年平均每月生产量是去年的几分之几? 1÷5=1/5
2、今年比去年增产几分之几? 1/5×(12-5)=7/5
3、今年比去年增产百分之几? 7/5=1.4=140%
综合算式:1÷5×(12-5)=1.4=140% 答:这个厂今年比去年增产140%。
8.幼儿园买进大小两种毛巾各40条,共用258.8元。大毛巾的单价比小毛巾单价的2倍多0.11元。这两种毛巾单价各是多少元?
解:设小毛巾的单价是x元,则大毛巾的单价是(2x+0.11)元。 [x+(2x+0.11)]×40=258.8 3x=6.47-0.11 x=6.36÷3
x=2.12
2x+0.11=2.12×2+0.11
=4.35
答:大毛巾的单价是每条4.35元,小毛巾的单价是每条2.12元。
9. 一间长4、8米、宽3、6米的房间,用边长0、15米的正方形瓷砖铺地面,需要768块。在长6米、宽4、8米的房间里,如果用同样的瓷砖来铺,需要多少块?如果在第一个房间改铺边长0、2米的正方形瓷砖,要用多少块?(用比例解)
分析:房间的面积是一定的,每块砖的面积和块数成反比例。 解:设需要x块。 0.15×0.15x =6×4.8 x =6×4.8÷0.15÷0.15 x =1280
答:需要1280块。
解:设需要y块。 0.2×0.2y=4.8×3.6
y=4.8×3.6÷0.2÷0.2 y=432
答:需要432块。
10.一艘轮船所带的柴油最多可以用6小时。驶出时顺风,每小时行驶30千米。驶回时逆风,每小时行驶的路程是顺风时的4/5。这艘轮船最多驶出多远应往回驶?
分析:轮船行驶的路程一定,每小时行驶的路程和时间成反比例。 解:设这艘轮船逆风行驶了x小时。 30×4/5x=30×(6-x) 4/5x=6-x
9/5x=6 x=10/3
30×4/5×10/3=80(千米)
答:这艘轮船最多驶出80千米就应往回驶。
11. 一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,这时距离乙地还有94千米。甲乙两地的公路长多少千米? 分析:“从第二小时比第一小时多行了16千米”可知第二小时行了全程的1/7和16千米。第一小时和第二小时共行全程的(1/7+1/7)和16千米。由此可知(96+16)占全程的(1-1/7-1/7)。 根据上面的分析得: (96+16)÷(1-1/7-1/7) =112÷5/7 =112×7/5
=156、8(千米)
答:甲乙两地的公路长156、8千米。 或者用方程解:
解:设甲乙两地的公路长x千米。 (1-1/7-1/7)x=96+16
5/7x=112 x=156、8
答:甲乙两地的公路长156、8千米。
题目改编:若这题中的一个条件改成“这时距离甲地96千米”,其它条件不变,问题也不变。如何解答?
12.一个编织组,原来30人10天生产1500只花篮。现在增加到80人,按原来的工效,生产6000只花篮需要多少天?(用比例解答)
分析:题中说“按原来的工效”,这说明这个纺织组的工作效率是一定的。工作效率一定,工作总量和工作时间成正比例。 解:设需要x天。
1500:(30×50)=6000:(80×x) 1500×(80×x)=6000×(30×50) x=6000×30×50÷80÷1500 x=6000÷80 x=75
答:需要75天。
13.红光农场有两块麦田,第一块5.5公顷,共收小麦27.3吨,第二块3.6公顷,共收小麦18.2吨,这两块麦田平均每公顷收小麦多少吨?
14. 一辆汽车在山区行驶,上山用了3小时,平均每小时行30千米,下山行完同样的路程,只用了2小时,求这辆汽车上山,下山的平均速度.
15. 甲乙二人同时从同一地点向相反方向背向而行,甲每小时行驶15千米,乙每小时行驶12千米,4.5小时两人相距多少千米?甲比乙多走多少千米?
16. 服装厂计划做1470套服装,已经做了5天,平均每天做150套,剩下的要4.5天完成,剩下的平均每天比原来每天多做多少套?
17. 每套童装用布2.5米,每套成人服装用布4米,现在要做童装5套,成人服装3套,共有布30米,还可以剩下多少米布?如果每条裤子用布1.1米,剩下的这些布可做裤子多少条?
18.超市开展矿泉水“买5送1”的活动。一个旅游团有48人,想每人发一瓶矿泉水,需要购买多少瓶水就够了?
(买5送1 的意思是要6瓶矿泉水只需要买5瓶,48里有8个6,所以只需要8个5就可以了,答案是40瓶。)
19. 一个小数部分是两位的小数,用四舍五入法把它精确到0.1,它的近似值是5.0,那么这个两位小数是什么?
(解析:所求的两位小数是:4.95,4.96,4.97,4.98,4.99,5.00,5.01,5.02,5.03,5.04
20. 一只底面是正方形的长方体铁箱,如果把它的侧面展开,正好得到一个边长是40cm的正方形.求这只铁箱的容积是多少升? 《 40÷4=10 10×10×40÷1000=4》
评论(2)|170
2009-01-12 20:39swdls123321|五级
小学5年级奥数题选
填空题
1.计算:0.02+0.04+0.06+0.08+……+19.94+19.96+19.98=________。
2.1×1+2×2+3×3+……1997×1997+1998×1998的个位数字是________。
3.一个两位数,在它的两个数字中间添一个0,就比原来的数多630,这样的两位数共有_______个。
4.现有壹元的人民币4张,贰元的人民币2张,拾元的人民币3张,如果从中至少取1张,至多取9张,那么,共可以配成_______种不同的钱数。
5.一组四位数,每一个数的数字均不为0,并且互不相同,但每个数所有的数字和都为12,将所有这样的四位数从小到大依次排列,第25个数是_______。
6.大猴给小猴分桃子,如果每只小猴分8个桃子,还剩10桃子;如果每只小猴分9个桃子,那么有一只小猴就分不足9个,但仍可以分到桃子,小
8.有一栋居民楼,每家都订2份不同的报纸,该居民楼共订了三种报纸。其中《南通广播电视报》34份,《扬子晚报》30份,《报刊文摘》22份。那么,订《扬子晚报》和《报刊文摘》的共有_______家。
9.强强、芳芳两人在相距120米的直路上来回跑步,强强每秒跑2米,芳芳每秒跑3米。如果两人同时从两端点出发,那么15分钟内他们共相遇_______次。
10.某车间加工一批零件,计划每天加工48个,实际每天比计划多加工12个,结果提前5天完成任务。这批零件共有_______个。
(小数报427期改编)
11.李、孙、王三人今年年龄之和为113岁,王38岁时,孙的年龄是李的2倍,李17岁时,王的年龄是孙的2倍,孙今年_______岁。
(小数报492期,98—9—18)
(小数报475期)
13.有16把锁和20把钥匙,其中20把钥题中的16把是和16把锁一一配对的,但现在锁和钥匙弄乱了。那么,至少需要试_______次才能确保锁和钥匙都配对起来。
(小数报457期,改编)
(小数报475期98—4—10改编)
15.甲、乙、丙、丁四名学生参加南通市小学生数学竞赛。赛前,三位老师进行预测:
一位老师说:丙第一名,甲第二名;
另一位老师说:乙第一名,丁第四名;
还有一位老师:丁第二名,丙第三名。
成绩揭晓时,发现三位老师的预测都只对了一半。请推断比赛结果:第一名是_______,第二名是_______,第三名是_______,第四名是_______。
五.年龄问题
1、三年前小雅和爸爸的年龄和是45,爸爸比小雅大35岁。今年爸爸多大?小雅多大?急!要算式。
2、1999年爸爸的年龄是姐姐和弟弟年龄和的4倍,2005年爸爸的年龄是姐姐和弟弟年龄和的2倍,爸爸是哪一年生的?
三年前小雅年纪:(45-35)/2=5,所以今年爸爸45-5+3=43岁,今年小雅5+3=8岁
设爸爸1999年x岁, x+6=2(x/4+12) x+6=x/2+24 x=36
1999-36=1963
他们爸爸是1963年生的 小雅(45-35)/2+3=8 爸爸5+35+3=43 解法2。
设爸爸1999年x岁,则 x+6=2*(x/4+6*2) x=36
则爸爸是1999-36=1963年生的
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo6.com 版权所有 湘ICP备2023023988号-11
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务