2004-2005学年第一学期期末考试试卷
课程代码: 12063C 课时: 48 课程名称:Linear Algebra 线性代数(英) 适用对象:2003级国际学院
1. Filling in the blanks (3’×6=18’)
(1) Let A=[α,γ2,γ3,γ4]andB=[β,γ2,γ3,γ4] be (4×4) matrices, and det(A)=4, det(B)=1, then det(A+B)= . ⎡0⎢1⎢
(2) Let A=⎢0
⎢⎣0
100⎤000⎥⎥
010⎥, then the eigenvalues of A are . ⎥
001⎦
(3) Let S={α1,α2,α3} be a linearly dependent set of vectors, where
⎧⎧⎧⎪0⎫⎪⎪2⎫⎪⎪1−k⎫⎪
α1=⎨4⎬,α2=⎨3−k⎬,α3=⎨2⎬. Then the number k is .
⎪⎪⎪⎩2−k⎪⎭⎩1⎪⎭⎩3⎪⎭
(4) Let A and B be (n×n) matrices, and A2=A, B2=B, A+B=I, then AB+BA= .
(5) Let A and B be (3×3) matrices, and AB=2A+B, where
⎡202⎤
⎥-1B=⎢040⎥,then (A-I)= . ⎢
⎢⎦⎣202⎥
⎧⎧⎧⎪⎪0⎫⎪⎪2⎫⎪⎪1⎫
α=⎨−1⎬,β=⎨0⎬,γ=⎨2⎬. Then the scalar triple product
(6) Let
⎪⎪⎪⎭⎩1⎪⎭⎩1⎪⎭⎩0⎪
α⋅(β×γ)= .
1
2. Determining the following statement whether it is true(T) or false(F) (2’×6=12’)
(1) If A and B are symmetric (n×n) matrices, then AB is also symmetric.
( )
(2) A consistent (3×2) linear system of equations can never have a unique solution. ( ) (3) If u·v =0, then either u =0 or v =0 . ( ) (4) If x is an eigenvector for A, where A is nonsingular, then x is also an eigenvector for A-1. ( ) (5) If A, B, and C are (n×n) matrices such that AB=AC and det(A)≠0, then B=C. ( ) (6) If A is an (n×n) matrix such that det(A)=1, then Adj[Adj(A)]=A. ( ) 3. (15’)
111⎤⎡1+x
11⎥⎢11−x
11+y1⎥. Calculate the determinant of the matrix ⎢1
⎢111−y⎥⎣1⎦
4. (15’)
⎧x1+x2+kx3=4⎪2
xkxxk−++=23, determine Consider the system of equations ⎨1⎪⎩x1−x2+2x3=−4
2
conditions on k that are necessary and sufficient for the system to be has only solution, infinite solutions, and no solution, and express the solutions by vectors. 5. (10’)
Suppose that {v1,v2,v3} is a linearly independent subset of Rm. Show that the set 6. (15’)
{v1,v1+v2,v1+v2+v3}is also linearly independent.
⎡101⎤
−1−1A=⎢020⎥ABA=BA+3I. Find B. and Let ⎢⎥⎣101⎦
7. (15’)
⎡2−1⎤100A=, calculate A. Let ⎢⎣−12⎥⎦
3
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo6.com 版权所有 湘ICP备2023023988号-11
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务