VivianTsangandSuzanneStevensonDepartmentofComputerScience
UniversityofToronto
Canada
vyctsang,suzanne@cs.utoronto.ca
Abstract
Comparingwordcontextsisakeycompo-nentofmanyNLPtasks,butrarelyisitusedinconjunctionwithadditionalonto-logicalknowledge.Oneproblemisthattheamountofoverheadrequiredcanbehigh.Inthispaper,weprovideagraphi-calmethodwhicheasilycombinesanon-tologywithcontextualinformation.Wetakeadvantageoftheintrinsicgraphicalstructureofanontologyforrepresentingacontext.Inaddition,weturntheon-tologyintoametricspace,suchthatsub-graphswithinit,whichrepresentcontexts,canbecompared.Wedeveloptwovari-antsofourgraphicalmethodforcompar-ingcontexts.Ouranalysisindicatesthatourmethodperformsthecomparisoneffi-cientlyandoffersacompetitivealternativetonon-graphicalmethods.
1Introduction
Manynaturallanguageproblemscanbecastasaproblemofcomparing“contexts”(unitsoftext).Forexample,thelocalcontextofawordcanbeusedtoresolveitsambiguity(e.g.,Sch¨utze,1998),assum-ingthatwordsusedinsimilarcontextsarecloselyrelatedsemantically(MillerandCharles,1991).Ex-tendingthemeaningofcontext,thecontentofadocumentmayrevealwhichdocumentclass(es)itbelongsto(e.g.,Xuetal.,2003).Inanyappli-cation,onceasensibleviewofcontextisformu-lated,thenextstepistochoosearepresentationthatmakescomparisonspossible.Forexample,inword
97
sensedisambiguation,acontextofanambiguousinstancecanberepresentedasavectorofthefre-quenciesofwordssurroundingit.Untilrecently,thedominantapproachhasbeenanon-graphicalone—contextcomparisonisreducedtoataskofmeasuringdistributionaldistancebetweencontextvectors.Thedifferenceinthefrequencycharacteristicsofcon-textsisusedasanindicatorofthesemanticdistancebetweenthem.
Wepresentagraphicalalternativethatcombinesbothdistributionalandontologicalknowledge.Webeginwiththeuseofadifferentcontextrepresen-tationthatallowseasyincorporationofontologicalinformation.Treatinganontologyasanetwork,wecanrepresentacontextasasetofnodesinthenet-work(i.e.,conceptsintheontology),eachwithaweight(i.e.,frequency).TocontrastourworkwiththatofNavigliandVelardi(2005)andMihalcea(2006),thegoalisnotmerelytoprovideagraph-icalrepresentationforacontextinwhichtherele-vantconceptsareconnected.Rather,contextsaretreatedasweightedsubgraphswithinalargergraphinwhichtheyareconnectedviaasetofpaths.Byin-corporatingthesemanticdistancebetweenindivid-ualconcepts,thegraph(representingtheontology)becomesametricspaceinwhichwecanmeasurethedistancebetweensubgraphs(representingthecon-textstobecompared).
Morespecifically,measuringthedistancebe-tweentwocontextscanbeviewedassolvingamin-imumcostflow(MCF)problembycalculatingtheamountof“effort”requiredfortransportingtheflowfromonecontexttotheother.Ourmethodhastheadvantageofincludingsemanticinformation(bymakinguseofthegraphicalstructureofanontol-ogy)withoutlosingdistributionalinformation(by
WorkshoponTextGraphs,atHLT-NAACL2006,pages97–104,
c2006AssociationforComputationalLinguisticsNewYorkCity,June2006.
usingtheconceptfrequenciesderivedfromcorpusdata).
Thisnetworkflowformulation,thoughsupport-ingtheinclusionofanontologyincontextcompari-son,isnotflexibleenough.Theproblemisrootedinthechoiceofconcept-to-conceptdistance(i.e.,thedistancebetweentwoconcepts,tocontrastitfromtheoverallsemanticdistancebetweentwocontexts).Certainconcept-to-conceptdistancesmayresultinadifficult-to-processnetworkwhichseverelycompro-misesefficiency.Toremedythis,weproposeanovelnetworktransformationmethodforconstructingapared-downnetworkwhichmimicsthestructureofthemoreprecisenetwork,butwithouttheexpensiveprocessingoranysignificantinformationlossasaresultofthetransformation.
Intheremainderofthispaper,wefirstpresenttheunderlyingnetworkflowframework,anddevelopamoreefficientvariantofit.Wethenevaluatetherobustnessofourmethodsonacontextcomparisontask.Finally,weconcludewithananalysisandsomefuturedirections.
2TheNetworkFlowMethod
2.1
MinimumCostFlow
AsastandardexampleofanMCFproblem,considerthegraphicalrepresentationofaroutemapfordeliv-eringfreshproducefromgrocers(supplynodes)tohomes(demandnodes).Theremainingnodes(e.g.,intersections,gasstations)haveneitherasupplynorademand.Assumingtherearesufficientsupplies,theoptimalsolutionistofindthecheapestsetofroutesfromgrocerstohomessuchthatalldemandsaresatisfied.
Mathematically,letbeaconnectednetwork,whereisthesetofnodes,andisthe
1setofedges.Eachedgehasacost,
whichisthedistanceoftheedge.Eachnodeisassociatedwithavaluesuchthatindicatesitsavailablesupply(),itsdemand(),orneither().Thegoalistofindasolutionforeachnodesuchthatalltheflowpassingthroughsatisfiesitssupplyordemandrequirement().Theflowpassingthroughnodeiscapturedbysuchthatwecanobservethecom-98
demand.Thecostoftheroutesbetweennodesisdeterminedbyasemanticdistancemeasuredefinedoveranytwonodesintheontology.Now,asinthegrocerydeliverydomain,thegoalistofindtheMCFfromsupplytodemand.
Wecantreatanyontologyasthetransportnet-work.Arelation(suchashyponymy)betweentwoconceptsonandeachisedgerepresentedcanbedefinedbyanedgeastheseman-,andthecostticdistancebetweenthetwoconcepts.Thisseman-ticdistancecanbeassimpleasthenumberofedgesseparatingtheconcepts,ormoresophisticated,suchasLin’s(1998)information-theoreticmeasure.(SeeBudanitskyandHirst(2006)forasurveyofsuchmeasures).
Numerousmethodsarepossibleforconvertingthewordfrequencyvectorofacontexttoaconceptfrequencyvector(i.e.,acontextprofile).Onesimplemethodistotransfereachelementinthewordvector(i.e.,thefrequencyofeachword)tothecorrespond-ingconceptsintheontology,resultinginavectorofconceptfrequencies.Inthispaper,wehavecho-senauniformdistributionofwordfrequencycountsamongconcepts,insteadofaweighteddistributiontowardstherelevantconceptsforaparticulartext.SincewewishtoevaluatethestrengthofourmethodalonewithoutanyadditionalNLPeffort,webypasstheissueofapproximatingthetruedistributionoftheconceptsviawordsensedisambiguationorclass-basedapproximationmethods,suchasthosebyLiandAbe(1998)andClarkandWeir(2002).
Tocalculatethedistancebetweentwoprofiles,weneedtocastoneprofileasthesupply(thatour)distanceandtheotherasthedemand().Noteissymmetric,sothechoiceofthesupplyandthedemandisarbitrary.Next,wemustdeterminethevalueofateachconceptnode;thisisjustthedifferencebetweenthe(normalized)supplyfre-quencyanddemandfrequency:
(4)
Thisformulayieldsthenetsupply/demand,,atnode.Recallthatourgoalistotransportallthesup-plytomeetthedemand—thefinalstepistodeter-minethecheapestroutesbetweenandsuchthattheconstraintsin(2)and(3)aresatisfied.Thetotal
distanceoftheroutes,ortheMCF,
ineqn.(1),isthedistancebetweenthetwocontextprofiles.
99
Finally,itisimportanttonotethattheMCFfor-mulationdoesnotsimplyfindtheshortestpaths
fromtheconceptnodesinthesupplytothoseinthedemand.Becauseaprofileisafrequency-weightedconceptvector,someconceptnodesareweightedmoreheavilythanothers,andtheroutesbetweensuchnodesacrossthetwoprofilesarealsoweightedmoreheavily.Indeed,ineqn.(1),thecostofeachroute,,isweightedby(howmuchsup-ply,orfrequencyweight,istransportedbetweennodesand).
3GraphicalIssues
Asalludedtointheintroduction,certainconcept-to-conceptdistancesposeaproblemtosolvingtheMCFproblemeasily.Thedetailsaredescribednext.3.1
Additivity
Intheory,ourmethodhastheflexibilitytoincorpo-ratedifferentconcept-to-conceptdistances.Theis-sueliesinthealgorithmsforsolvingMCFproblems.Existingalgorithmsaregreedy—theytakeastep-wise“localist”approachonthesetofedgesconnect-ingthesupplyandthedemand;i.e.,ateachnode,thecheapestoutgoingedgeisselected.Theassump-tionisthattheconcept-to-conceptdistancefunctionisadditive.Mathematically,foranypathfromnodetonode,,whereand,thedistancebetweennodesandisthesumofthedistanceoftheedgesalongthepath:
(5)
Theadditivityofaconcept-to-conceptdistanceen-tailsthatselectingthecheapestedgeateachstep
(i.e.,locally)yieldstheoverallcheapestsetofroutes(i.e.,globally).Notethatsomeofthemostsuccess-fulconcept-to-conceptdistancesproposedintheCLliteraturearenon-additive(e.g.,Lin,1998;Resnik,1995).Thisposesaprobleminsolvingournetworkflowproblem—theglobaldistancebetweenanycon-cepts,and,cannotbecorrectlydeterminedbythegreedymethod.
3.2
ConstructinganEquivalentBipartiteNetwork
Theissueofnon-additivedistancescanbeaddressedinthefollowingway.Wemaptherelevantportion
Figure2:Anillustrationofthetransformations(lefttoright)fromtheoriginalnetwork(a)tothebipartitenetwork(b),andfinally,tothenetworkproducedbyourtransformation(c),giventwoprofilesSandD.Nodeslabelledwitheither“S”or“D”belongtothecorrespondingprofile.Nodeslabelledwith“”or“”arejunctionnodes(seesection4.2).
ofthenetworkintoanewnetworksuchthattheconcept-to-conceptdistanceispreserved,butwith-outtheproblemintroducedbynon-additivity.Onepossiblesolutionistoconstructacompletebipar-titegraphbetweenthesupplynodesandthedemandnodes(thenodesinthetwocontextprofiles).Weset
inthebipartitegraphtothecostofeachedge
betheconcept-to-conceptdistancebetweenandintheoriginalnetwork.Sincethereisexactlyoneedgebetweenanypairofnodes,thenon-additivityisremovedentirely.(SeeFigures2(a)and2(b).)Now,wecanapplyanetworkflowsolveronthenewgraph.
However,oneproblemarisesfromperformingtheabovemapping—thereisaprocessingbottleneckasaresultofthequadraticincreaseinthenumberofedgesinthenewnetwork.Unfortunately,thoughtractable,polynomialcomplexityisnotalwaysprac-tical.Forexample,withanaverageof900nodesperprofile,making120profilecomparisonsinaddi-tiontonetworkre-structuringcantakeaslongas10days.2Ifwechoosetouseanon-additivedistance,themethoddescribedabovedoesnotscaleupwellforalargenumberofcomparisons.Next,wepresentamethodtoalleviatethecomplexityissue.
4NetworkTransformation
Onemethodofalleviatingthebottleneckistoreducetheprocessingloadfromgeneratingalargenumber
100
non-additivityissue,bygeneratinganedgewiththeexactconcept-to-conceptdistanceforeachpotentialnodecomparison,but,asnotedabove,istooinef-ficient.Oursolutionhereistoconstructanetworkthatusestheideaofapared-downA-shapedpathtomostlyavoidnon-additivity,butwithouttheineffi-ciencyofthecompletebipartitegraph.Thus,asex-plainedinmoredetailinthefollowingsubsections,wetradeofftheexactnessofthedistancecalculationagainsttheefficiencyofthenetworkconstruction.4.2
NetworkConstruction
onthetransformednetwork.Observethateachedge
,withcost,inthecompletebipartitenetwork,where,,isnowinsteadrepre-sentedbythreeedges:,,and,whereand.Thus,thetransformed
,becomes:distancebetweenand,
(6)
Inournetworkconstruction,weexploitthegeneral
notionofanA-shapedpathbetweenanytwonodes,butreplacethe“tip”oftheAwithtwonodes.Thenforeachnodeandinprofilesand,wegen-erateanedgefromstoanancestorof(theleft“branch”oftheA),anedgefromdtoanan-of(theright“branch”oftheA),andancestor
edgebetweenand(thetwonodesformingthe“elongatedtip”oftheA).Eachedgehastheexactconcept-to-conceptdistancefromtheoriginalnet-work,sothatthedistancebetweenanytwonodesandisthesumofthreeexactdistances.
Thesetofancestornodes,and,comprisethe“junction”pointsatwhichthesupplyfromcanbetransportedacrosstothenodesintosatisfytheirdemand.Thesetofjunctionnodes,,forapro-file,mustbeselectedsuchthatforeachnodein,containsatleastoneancestorof.(Seesection4.4fordetailsonthejunctionselectionpro-cess.)Theresultingnetworkisconstructedbydi-rectlyconnectingeachprofiletoitscorrespondingjunction,thenconnectingthetwojunctionsinthemiddle(Figure2(c)).
Thedifferencebetweenthecompletebipartitenetworkandthetransformednetworkhereisthat,insteadofconnectingeachnodeintoeverynodein,weconnecteachnodeintoeverynodein.ComparethetransformednetworkinFig-ure2(c)withthecompletebipartitenetworkinFig-ure2(b).Thecompletebipartitecomponentinthetransformednetwork(themiddleportionbetweenthejunctionnodeslabelledand)isconsid-erablysmallerinsize.Thus,thenumberofedgesinthetransformednetworkissignificantlyfeweraswell.
Next,wecanproceedtodefinethecostfunction
whereisthepreciseconcept-to-conceptdistancebetweenandintheoriginalnetwork.Oncewehavesetupthetransformednetwork,wecansolvetheMCFinthisnetwork,yieldingthedis-tancebetweenthetwo(supplyanddemand)profiles.
4.3DistanceDistortion
Becausethedistancebetweennodesandisnowcalculatedasthesumofthreedistances(eqn.(6)),somedistortionmayresultfornon-additiveconcept-to-conceptdistances.Toillustratethedistortionef-fect,considerJiangandConrath’s(1997)distance:
(7)
whereistheinformationcontentofanode,andisthelowestcommonsubsumerofnodesand.Thisdistancemeasuresthedif-ferenceininformationcontentbetweentheconceptsandtheirlowestcommonsubsumers.
Afterthetransformation,thedistanceisdistortedinthefollowingway.Ifandhavenocommonjunctionancestor,thenbecomes:
(8)
whereandarethejunctionancestorsofand,respectively.Otherwise,ifandshareacommonancestoratthejunction,then
becomes,
wherethetermineqn.(8)isre-placedby.Ineithercase,thetransformationreplacesthelowestcommonsubsumer
ineqn.(7)withsomeothercommonsubsumer
(or,mentionedabove).Un-less,thedistanceisdistorted
byusingalessprecisequantity,.
Notethattheinformationcontentofaconceptisgivenbyitsmaximumlikelihoodestimatebasedon
101
itsfrequencyinalargecorpus.Anincrementinthefrequencyofaconceptleadstoanincrementinthefrequencyofallitsancestors.Duetothefrequencypercolation,conceptswithasmalldepthtendtoac-cumulatehighercountsthanthosedeeperinthehi-erarchy(notethedifferenceindepth:
).Thus,weexpecttheinforma-tioncontentofaconcepttobehigherthanitsan-cestors,i.e.,aconceptismoresemanticallyspecificthanitsancestors,whichiscapturedbytheuseofthenegativefunctioninthedefinitionofIC.Thetransformeddistanceisdistortedaccordingly().
rithmsisquadratic(theformer)orcubic(thelatter)
inthenumberofnodesinanetwork,whichisunac-ceptablyexpensiveforourtransformationmethod.Notethattoensureeveryprofilenodehasanances-tornodeinthejunction,theselectionprocesshasalinearlowerbound.Tokeepthecostlow,itisbesttokeepalinearcomplexityforthejunctionselectionprocess.However,ifthisisnotpossible,itshouldbesignificantlylessexpensivethanaquadraticcom-plexity.Wewillempiricallyexploretheprocessfur-therinsection5.3.
5ContextComparison
Asalludedtoearlier,ournetworkflowmethodpro-videsanalternativetoapurelydistributionalandnon-graphicalapproachtocontextcomparison.Inthispaper,wewilltestbothvariantsofourmethod(withorwithoutthetransformationinsection4)inanamedisambiguationtaskinwhichthecontextwordswithinasmallwindowsurroundingtheam-biguouswordsarecompared.Ourpreliminaryanal-ysisshowsthatourgeneralnetworkflowframeworkisrobustandefficient.5.1
NameDisambiguation
4.4JunctionSelection
Selectionofjunctionnodesisakeycomponentofthenetworktransformation.Trivially,ajunctionconsistingofprofilenodesyieldsanetworkequiva-lenttothecompletebipartitenetwork.Thekeyistoselectajunctionthatisconsiderablysmallerinsizethanitscorrespondingprofile,hence,cuttingdownthenumberofedgesgenerated,whichresultsinsig-nificantsavingsincomplexity.
Notethatthereisatradeoffbetweentheover-allcomputationalefficiencyandthesimilaritybe-tweenthetransformednetworkandthecompletebi-partitenetwork.Thecloserthejunctionsaretothecorrespondingprofiles,thecloserthetransformednetworkresemblesthecompletebipartitenetwork.Thoughthedistancecalculationismoreaccurate,suchanetworkisalsomoreexpensivetoprocess.Ontheotherhand,therearefewernodesinajunc-tionasitapproachestherootlevel,butthereismoredistortioninthetransformedconcept-to-conceptdis-tance.Clearly,itisimportanttobalancethetwofac-tors.
Selectingjunctionnodesinvolvesfindingasmallersetofancestornodesrepresentingthepro-filenodesinahierarchy.Inotherwords,thejunc-tioncanbeviewedasanalternativerepresentationwhichisageneralizationoftheprofilenodes.Inadditiontotheprofilenodes,thejunctionnodesarealsoincludedinthetransformednetwork.Theymayprovideextrainformationaboutthecorrespondingcontext.
FindingageneralizationofaprofileisexploredintheworksofClarkandWeir(2002)andLiandAbe(1998).Unfortunately,thecomplexityofthesealgo-102
Thegoalfornamedisambiguationistoclassifyeachambiguousinstanceonthebasisofitssurroundingcontext.Oneapproachistouseanunsupervisedmethodsuchasclustering.Thisinvolvesmakingalargenumberofpairwisecomparisonsbetweenin-dividualcontexts.Giventhatthereisanoverheadtoincorporatingontologicalinformation,ournet-workflowmethoddoesnotcomputedistancesasef-ficientlyascalculatingapurelyarithmeticdistancesuchascosineorEuclideandistance.Ouralterna-tiveapproachistouseminimaltrainingdata.Us-ingahandfulofcontexts,wecanbuilda“goldstan-dard”profileforeachsenseofanambiguousnamebyusingthecontextwordsofasmallnumberofinstances.Wethencomparethecontextprofileofeachinstancetothegoldstandards.Eachinstanceisgiventhelabelofthegoldstandardprofiletowhichitscontextprofileistheclosest.5.2
ExperimentalSetup
Inournamedisambiguationexperiment,weusethedatacollectedbyPedersenetal.(2005)fortheirnamediscriminationtask.Thisdataistakenfrom
NamePairs
Ronaldo/DavidBeckham
0.74
Microsoft/IBM
0.56
Jordan/Egyptian
0.510.53
200(Full)0.800.730.77
200(Trans)0.88
0.98
0.75
0.97
0.76
0.750.76
0.830.820.990.99
Table1:Namedisambiguationresults(accuracy/F-measure)ataglance.Thebaselineistherelativefrequencyofthemajorityname.“200”and“100”givetheaveragedresults(overfivedifferentruns)using200and100randomlyselectedtraininginstancesperambiguousname.Theweightedaverageiscalculatedbasedonthenumberoftestinstancespertask.“Full”and“Trans”refertotheresultsusingthefullnetwork(pre-transformation)orthepared-downnetwork(withtransformation),respectively.
theAgenceFrancePressEnglishServiceportionoftheGigaWordEnglishcorpusdistributedbytheLin-guisticDataConsortium.Itconsistsofthecontextsofsixpairsofnames,including:thenamesoftwosoccerplayers(RonaldoandDavidBeckham);anethnicgroupandadiplomat(TajikandRolfEkeus);twocompanies(MicrosoftandIBM);twopoliticians(ShimonPeresandSlobodanMilosevic);anationandanationality(JordanandEgyptian);andtwocountries(FranceandJapan).ThesenamepairsareselectedbyPedersenetal.(2005)toreflectarangeofconfusabilitybetweennames.
Eachpairofnamesservesasoneofsixnamedisambiguationtasks.Eachnameinstancecon-sistsofacontextwindowof50words(25wordstotheleftandtotherightofthetargetname),withthetargetnameobfuscated.Forexample,forthetaskofdistinguishing“DavidBeckham”and“Ronaldo”,thetargetnameineachinstancebe-comes“David
Notethatthecomplexityofthisselectionprocessislinear,sinceallprofilenodesmustbeexaminedtoensuretheyhaveanancestorinthejunction;anyprofilenodeofwhichnojunctionnodeisanancestorisaddedtothejunction.Thisprocesscanonlybeavoidedbyusingjunctionnodesofzerodepthexclu-sively.
3
103
,whosedepthissmall.Junctionnodeswithasmalldepthdistortthedistancemorethanthosewithalargerdepth.Surprisingly,ourexperimentindicatesthatusingsuchnodesproducesequallygoodorbet-terperformance.Thissuggeststhatselectingajunc-tionwithalargerdepth,atleastforthedatainthistask,isnotnecessary.
SpeedImprovementIncomparisontoourre-portedrunningtimeonthepre-transformationnet-work(120comparisonsrunningfor10days),onthesamemachine,making12,000comparisonscannowbeaccomplishedwithintwohours.Intermsofcomplexity,ifwehaveprofilenodesandjunc-tionnodes,thenumberofedgestobeprocessedis
.Giventhatourjunctionshavesignif-icantlyfewernodesthantheoriginalprofiles,therunningtimeissignificantlylessthanquadraticinthenumberofprofilenodes.
tivetoapurelydistributionalandnon-graphicalap-proach.
Inouron-goingwork,wearefurtherexploringhowthechoiceofjunctioninfluencestheperfor-manceofdifferenttypesofconcept-to-conceptse-manticdistances.Forexample,wouldabottom-upjunctionselectionapproach(fromtheprofilenodesinsteadoffromtherootlevel)resultinbetterper-formance?Inaddition,weintendtoexaminethegraphicalpropertiesoftheindividualprofilesaswellastheroutesbetweentheconceptsacrossprofilesselectedbyournetworkflowmethods.Suchanaly-seswillhelpusgaininsightintothestrengths(andweaknesses)oftakingadvantageofagraphicalrep-resentationofcontextsaswellastreatinganontol-ogyasametricspaceforcontextcomparisons.
References
Budanitsky,A.andHirst,G.(2006).EvaluatingWordNet-basedmeasuresofsemanticdistance.ComputationalLinguistics.Toappear.
Clark,S.andWeir,D.(2002).Class-basedprobabilityestima-tionusingasemantichierarchy.ComputationalLinguistics,28(2):187–206.
Jiang,J.andConrath,D.(1997).Semanticsimilaritybasedoncorpusstatisticsandlexicaltaxonomy.InProceedingsontheInternationalConferenceonResearchinComputationalLinguistics,pages19–33.
Li,H.andAbe,N.(1998).Wordclusteringanddisambiguationbasedonco-occurrencedata.InProceedingsofCOLING-ACL1998,pages749–755.
Lin,D.(1998).Aninformation-theoreticdefinitionofsimilar-ity.InProceedingsofInternationalConferenceonMachineLearning.
Mihalcea,R.(2006).Randomwalksontextstructures.InPro-ceedingsofCICLing2006,pages249–262.
Miller,G.A.andCharles,W.G.(1991).Contextualcorrelatesofsemanticsimilarity.LanguageandCognitiveProcesses,6(1):1–28.
Navigli,R.andVelardi,P.(2005).Structuralsemanticinter-connections:Aknowledge-basedapproachtowordsensedisambiguation.IEEETransactionsonPatternAnalysisandMachineIntelligence,27(7).
Pedersen,T.,Purandare,A.,andKulkarni,A.(2005).Namediscriminationbyclusteringsimilarcontext.InProceedingsoftheSixthInternationalConferenceonIntelligentTextPro-cessingandComputationalLinguistics.
Resnik,P.(1995).Usinginformationcontenttoevaluatese-manticsimilarityinataxonomy.InProceedingsofthe14thInternationalJointConferenceonArtificialIntelligence.Sch¨utze,H.(1998).Automaticwordsensediscrimination.ComputationalLinguistics,24(1):97–123.
Xu,W.,Liu,X.,andGong,Y.(2003).Documentclusteringbasedonnon-negativematrixfactorization.InProceedingsofthe26thACMSIGIRConference.
7Conclusions
Wehavegivenanoverviewofournetworkflowfor-malismwhichseamlesslycombinesdistributionalandontologicalinformation.Givenasuitableon-tology,acontextvectorofwordfrequenciescanbetransformedintoacontextprofile—afrequencydistributionovertheconceptsintheontology.Incontrasttotraditionalnon-graphicalapproachestomeasuringonlythedistributionaldistancebetweencontextvectors,weprovideagraphicalformalismwhichincorporatesboththesemanticdistanceofthecomponentnodesaswellasthedistributionaldiffer-encesbetweenthecontextprofiles.Bytakingadvan-tageofthegraphicalstructureofanontology,ourmethodallowsasystematicandmeaningfulwayofabstractingoverwordsinacontext,andbyexten-sion,ameaningfulwayofcomparingcontexts.
Oneconcernwithourmethodinitspre-transformationformisitsinabilitytoincorporatesophisticatedconcept-to-conceptsemanticdistancesefficiently.Toremedythis,weproposeanoveltech-niquethatmimicsthestructureofthemorecompu-tationallyintensivenetwork.Ourpreliminaryeval-uationshowsthatthetransformationdoesnotham-perthemethod’sabilitytomakefine-grainedseman-ticdistinctions,andthecomputationalcomplexityisdrasticallyreducedaswell.Generally,ournetworkflowmethodpresentsahighlycompetitivealterna-104
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo6.com 版权所有 湘ICP备2023023988号-11
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务