您好,欢迎来到划驼旅游。
搜索
您的当前位置:首页九年级下册数学教学工作计划合集(6篇)

九年级下册数学教学工作计划合集(6篇)

来源:划驼旅游

九年级下册数学教学工作计划合集

  一、教学背景:

  为了加强课堂教学,完善教学常规,能够保证教学的顺利开展,完成初中最后一学期的数学教学,使之高效完成学科教学任务制定了本教学计划。

  二、学情分析:

  这学期我所带的班级仍是81和85,85班是普通班,基础知识水平较差,从期末考试的成绩来看,及格人数占20%;81班的总体水平比85班较好,但是从本次的考试成绩来看,成绩较为一般。及格人数只占到60%。这与我之前的计划相差还有一截儿。85班差生较多,期末成绩单位数的就有4人,针对这些情况,分析他们的知识漏洞及缺陷,及时进行查漏补缺,特别是多关心、鼓励他们,让这些基础过差的学生能努力掌握一部分简单的知识,提高他们的学习积极性,建立一支有进取心、能力较强的学习队伍,让全体同学都能树立明确的数学学习目的,形成良好的数学学习氛围。

  三、新课标要求:

  初三数学是按照九年义务教育数学课程标准来实施的,其目的是通过数学教学使每个学生都能够在学习过程中获得最适合自己的发展。通过初三数学的教学,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算, 逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度,顽强的学习毅力和思考、探索的新思想。培养学生应用数学知识解决问题的能力。

  四、本学期学科知识在整个体系中的位置和作用:

  本册书的4章内容涉及《数学课程标准》中“数与代数”“空间与图形”和“实践与综合应用”三个领域的内容,其中第26章“二次函数”和第28章“锐角三角函数”的内容,都是基本初等函数的基础知识,属于“数与代数”领域。然而,它们又分别与抛物线和直角三角形有密切关系,即这两章内容既涉及数量关系问题,又涉及图形问题,能够很好地反映数形结合的数学思想和方法。第27章“相似”的内容属于“空间与图形”领域,其内容以相似三角形为核心,此外还包括了“位似”变换。在这一章的最后部分,安排了对初中阶段学习过的四种图形变换(平移、轴对称、旋转和位似)进行归纳以及综合运用的问题。第29章“投影与视图”也属于“空间与图形”领域,这一章是应用性较强的内容,它从“由物画图”和“由图想物”两个方面,反映平面图形与立体图形的相互转化,对于培养空间想象力能够发挥重要作用。对于“实践与综合应用”领域的内容,本套教科书除在各章的正文和习题部分注意安排适当内容之外,还采用了 “课题学习”“数学活动”等编排方式加强对数学应用的体现。本册书的第29章安排了一个课题学习“制作立体模型”,并在每一章的最后安排了2~3个数学活动,通过这些课题学习和数学活动来落实与本册内容关系密切的“实践与综合应用”方面的要求。

  五、个单元章节:

  第26章 二次函数

  本章主要研究二次函数的概念、图象和基本性质,用二次函数观点看一元二次方程,用二次函数分析和解决简单的实际问题等。这些内容分为三节安排。

  第26.1节“二次函数”首先从简单的实际问题出发,从中引发和归纳出二次函数的概念;然后由函数 开始,逐步深入地、由特殊到一般地、数形结合地讨论图象和基本性质,最后安排了运用二次函数基本性质探究最大(小)值的问题。这些内容都是二次函数的基础知识,它们为后面两节的学习打下理论基础。第26.2节“用函数观点看一元二次方程”从一个斜抛物体(例如高尔夫球)的飞行高度问题入手,以给出二次函数的函数值反过来求自变量的值的形式,用函数观点讨论一元二次方程的根的几种不同情况,最后结合二次函数的图象(抛物线)归纳出一般性结论,并介绍了利用图象解一元二次方程的方法。这一节是反映函数与方程这两个重要数学概念之间的联系的内容。第26.3节“实际问题与二次函数”安排了三个探究性问题,以商品价格、磁盘存储量和拱桥桥洞的有关问题为背景,运用二次函数分析和解决实际问题。教科书从实际问题出发,引导学生分析问题中的数量关系,建立相应的数学模型即列出函数关系式,进而利用二次函数的性质和图象研究问题的解法。通过这一节的学习可以使学生对解决实际问题的数学模型的认识再提高一步,从而提高运用数学分析问题和解决问题的能力。本章教学结束之后,学生在已经学习了一次函数(包括正比例函数)、反比例函数和二次函数,这些都是代数函数,即解析式中只涉及代数运算(加、减、乘、除、乘方、开方)的函数。至此,学生对函数的认识已告一段落。

  第27章 相似

  本章的主要内容包括相似图形的概念和性质,相似三角形的判定,相似三角形的应用举例和位似变换等。此前学习的全等是图形之间的一种特殊关系,而本章学习的相似是比全等更具一般性的图形之间的关系。全等可以被认为是特殊的相似(相似比为1),对于全等的认识是学习相似的重要基础。

  第27.1节“图形的相似”从学生熟悉的一些实际问题说起,引出相似图形的概念,以及相似多边形的概念、性质等,使学生对相似先有一个一般性的认识。第27.2节“相似三角形”的内容是讨论最基本的多边形──三角形的相似关系,这是认识相似关系的基础,也是本章的重点内容。教科书首先安排了证明了“过三角形一边中点且平行于另一边的直线,截出的三角形与原三角形相似”,然后将其推广到更一般的结论“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”。在此基础上,教科书安排了三个探究问题,引导学生得出相似三角形的三种主要判定方法。教科书对于其中第一个问题进行了推导证明,另两个问题的推导证明安排学生自己完成。接着,教科书通过三个例题讨论在测量中如何利用相似三角形的知识,这些例题代表了测量中的常见典型问题。本节最后安排了相似三角形的周长和面积问题。第27.3节“位似”讨论一种图形变换──位似变换。位似是一种特殊的相似,它的特殊性表现在“两个相似图形的对应点的连线都交于一点(位似中心)”。教科书安排了利用坐标描述位似变换的内容,这是数形结合方法的体现。本套教科书中先后共出现了四种图形变换:平移、轴对称、旋转和位似,本节最后安排了一幅包含这四种变换的图案,学生通过思考图案中的问题,可以对四种变换进行综合回

  第28章锐角三角函数

  本章主要内容包括:锐角三角函数(正弦、余弦和正切),解直角三角形。锐角三角函数是自变量为锐角时的三角函数,即缩小了定义域的后的三角函数。解直角三角形在实际当中有着广泛的应用,锐角三角函数为解直角三角形提供了有效的工具。相似三角形的知识是学习锐角三角函数的直接基础,勾股定理等内容也是解直角三角形时经常使用的数学结论,因此本章与第18章“勾股定理”和第27章“相似”有密切关系。

  第28.1节“锐角三角函数”中,教科书从沿山坡铺设水管的问题谈起,通过讨论直角三角形中直角边与斜边的比,使学生感受到锐角的大小确定后相应边的比也随之确定,而且不同的角度对应不同的比值,这种对应正是函数关系。教科书设置了“探究”栏目,让学生通过自主探究,利用相似三角形得出结论,由此引出正弦函数的概念。在此基础上,引导学生类比对正弦函数的讨论,得出余弦函数和正切函数的定义。接着教科书讨论了“已知角的大小求它的三角函数值”和“已知角的三角函数值求角”这两种问题,这样就从两个相反方向再次强调了锐角与其三角函数值之间的一一对应关系。现在计算器已经成为学习和运用三角函数的有力工具,教科书在本节最后介绍了如何使用计算器求三角函数值以及如何由三角函数值求对应的角。第28.2节“解直角三角形”中,教科书借助实际问题背景,要求学生探讨在直角三角形中,根据两个已知条件(其中至少有一个是边)求解直角三角形,并归纳出解直角三角形常用的知识和方法。接着教科书又结合四个实际问题介绍了解直角三角形在实际中的应用,这些问题的已知条件分别属于几种不同类型,解决方法具有典型性,体现了正弦、余弦和正切这几个锐角三角函数在解决实际问题中的作用。本节最后通过对比测量大坝的高度与测量山的高度,直观形象地介绍了“化整为零,积零为整”“化曲为直,以直代曲”的数学基本思想。

  第29章 投影与视图

  本章的主要内容包括投影和视图的基础知识,一些基本几何体的三视图,简单立体图形与它的三视图的相互转化,根据三视图制作立体模型的实践活动。全章分为三节。

  第29.1 节“投影”中,首先从物体在日光或灯光下的影子说起,引出投影、平行投影、中心投影、正投影等概念;然后以铁丝和正方形纸板的影子为例,讨论当直线和平面多边形与投影面成三种不同的位置关系时的正投影,归纳出其中蕴涵的正投影的一般规律;最后以正方体为例,讨论立体图形与投影面成不同位置关系时的正投影。整个讨论过程是按照一维、二维和三维的顺序发展的。第29.2节“三视图”讨论的重点是三视图,其中包括三视图的成像原理、三视图的位置和度量规定、一些基本几何体的三视图等,最后通过6道例题讨论简单立体图形(包括相应的表面展开图)与它的三视图的相互转化。这一节是全章的重点内容,它不仅包括了有关三视图的基本概念和规律,而且包括了反映立体图形和平面图形的联系与转化的内容,与培养空间想象能力有直接的关系。第29.3节“课题学习 制作立体模型”中,安排了观察、想象、制作相结合的实践活动,这是动脑与动手并重的学习内容。进行这个课题学习既可以采用完成的形式,也可以采用合作式学习的方式。应该把这个课题学习看作对前面学习的内容是否切实理解掌握以及能否灵活运用的一次联系实际的检验。

  六、教法和学法指导方案:

  (1)指导学生形成拟定自学计划的能力.(2)指导学生学会预习的能力.要求学生边读边思边做好预习笔记,从而能带着问题听课.(3)指导学生读书的方法.(4)指导学生做笔记、写心得、绘图表的方法,使他们能够把自己的思想表达出来.(5)指导学生有效的记忆方法和温习教材的方法.3.学习能力的指导 包括观察力、记忆力、思维力、想象力、注意力以及自学、表达等能力的培养.4.应考方法的指导 教育学生树立信心,克服怯场心理,端正考试观.要把题目先看一遍,然后按先易后难的次序作答;要审清题意,明确要求,不漏做、多做;要仔细检查修改.5.良好学习心理的指导 教育学生学习时要专注,不受外界的干扰;要耐心仔细,思考,不抄袭他人作业;要学会分析学习的困难,克服自卑感和骄傲情绪.对不同层次学生的数学学习能力的培养提出不同的要求;根据不同学习能力结合数学教学采取多种方法进行培养;根据个别差异因材施教,培养数学学习能力,采取小步子、多指导训练的方式进行;通过课外活动和参加社会实践,促进数学学习能力的发展. 总之,对学生数学学习方法的指导,要力求做到转变思想与传授方法结合,课上与课下结合,学法与教法结合,教师指导与学生探求结合,统一指导与个别指导结合,建立纵横交错的学法指导网络,促进学生掌握正确的学习方法.

  七、阶段性测试或检查方式及辅导措施:

  (1)注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。

  (2)批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。

  (3)按时检验学习成果,做到单元测验的有效、及时,测验卷子的批改不过夜。考后对典型错误利用学生想马上知道答案的心理立即点评。

  (4)及时指导、纠错:争取面批、面授,今天的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。课后反馈。落实每一堂课后辅助,查漏补缺。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。

  (5)积极与其它老师沟通,加强教研教改,提高教学水平。

  (6)经常听取学生良好的合理化建议。

  (7)以“两头”带“中间”战略思想不变。

  (8)深化两极生的辅导。

  八、教学进度安排:

  3.1---3.8 第一周: 讲评期末试卷 第二十六章 二次函数(12)

  26.1 二次函数及其图象、性质

  3.9---3.15 第二周: 26.2 二次函数的应用

  3.16—3.22 第三周: 26.2 二次函数的应用 26.3 课题学习 建立函数模型

  3.23—3.29 第四周: 综合小复习 单元测试及讲评

  3.30—4.5 第五周: 第二十七章 相似(13) 27.1 相似形

  4.6—4.12 第六周: 27.2 相似三角形

  4.13—4.19 第七周: 27.2 相似三角形 27.3 相似多边形

  4.20—4.26 第八周: 27.3 相似多边形第

  4.27—5.3 第九周: 小复习 单元测试及讲评

  5.4—5.10 第十周: 期中考试 讲评试题

  5.11—5.17 第十一周: 二十八章 锐角三角函数(12) 28.1 锐角三角函数

  5.18—5.24 第十二周: 28.2 解直角三角形

  5.25—5.31 第十三周: 28.2 解直角三角形 28.3 课题学习 测量 小复习 单元测试及讲评

  6.1—6.7 第十四周: 第二十九章 视图与投影(11)29.1 三视图

  6.8—6.14 第十五周: 29.1 三视图 29.2 展开图

  6.15—6.21 第十六周: 29.2 展开图 29.3 课题学习 图纸与实物模型小复习 单元测试及讲评

  6.22—6.28 第十七周: 综合复习一

  6.29—7.5 第十八周: 综合复习二

  7.6—7.12 第十九周: 综合复习三

  7.13—7.19第二十周: 期末考试

九年级下册数学教学工作计划合集

  九年级复习教学工作的好坏,直接关系到中考的成功与否。为保障毕业班复习教学取得良好成效,奠定今年中考胜利的基础,结合本班学生实际,对九年级复习教学工作制定以下计划。

  一、 指导思想

  以复习课型模式研究,提高课堂效益为重点,面向全体学生,优生优培,中等生提高,困难生稳中求进;依纲据本,抓住重点,突破难点,强化薄弱环节;加强教情、学情研究,强化中考的研究,大面积提高教学成绩,促进九年级复习教学工作又好又快发展。

  二、主要工作及要求、措施

  1、提高认识,全力以赴,进入冲刺状态

  以“责任重于泰山,质量压倒一切”的责任感,树立“认真就是水平,负责就是能力”的观念,九年级下学期数学教学计划发扬关键时刻冲得上豁得出的拼搏精神,全力以赴,聚精会神,专心致志,真真正正进入冲刺状态,苦战120天,用成绩说话,坚决夺取今年中考的全面胜利。

  2、周密计划,科学安排

  本学期完成教学进度后,即转入总复习阶段。总体时间安排是开学——4月中旬为第一轮复习,以课本知识的疏理、归纳、总结为主;4月下旬—5月中旬30天左右,以课外拓展为主,5月下旬—6月中考前,主要是整合升华阶段,训练应试能力与技巧。

  三轮复习的具体思路是:

  一轮复习本着全面、扎实、系统、灵活的指导思想,一是做到“四个坚持”,即:坚持把复习的重点放在基础知识上;坚持补弱纠偏,重在一轮;坚持改进课堂教学,提高复习效率;坚持面向全体,实现大面积丰收。二是落实“四个为主”,即以基础知识的复习为主,以低中档题目的训练为主,以学科内综合为主,以小综合训练为主。三是处理好“三个关系”,即:基础和能力的关系(强化基础,提升能力),扬长与补弱的关系,复习知识与做题的关系(做题的目的是回扣知识提升能力)。四是确保两项常规的落实,即教师的教学常规和学生学习常规的落实。

  二轮复习本着“巩固、完善、综合、提高”的指导思想,采取“专题复习加综合训练”的复习模式,突出“五个强化”,即:

  ①强化时间观念;

  ②强化研究:重点研究 “两纲”(教学大纲和考试说明),“两题”(综合题和能力题)、“两课”(复习课和讲评课)、“两生”(优生和困难生)、“两法”(教学方法和学习方法)、“两情”(教情和学情);

  ③强化训练:立足“三个讲好”,增强“五个针对性”。“三个讲好”:讲好专题、讲好试卷、讲好练习;五个针对性:针对目标生讲、针对中考新模式指向讲、针对二轮复习能力要求讲、针对反馈的问题讲、针对典型题目讲;

  ④强化应试技巧与规范化,最大限度降低非知识性丢分;

  ⑤强化学生心理,加强心理辅导,使学生以一种积极的心态复习,以必胜的信念参加中考。

  三轮复习以“回扣、模拟、完善、调整”为指导思想。抓回扣做到“四化要求”,即:回扣教材提纲化、回扣基础系统化、回扣形式习题化、回扣时间具体化;抓模拟做到“四性要求”,即试题体现基础性,考试体现模拟性,答题体现规范性,讲解体现系统性。逐步达到完善知识体系,适应考试要求、调整教与学的方向、升华应试技能的目的。

  3、细致研究教材、考试说明、中考试题,做到有的放矢。

  《考试说明》或学科新课程标准,是中考命题的.基本依据。今年中考改革力度大,研究透彻《中考说明》及有关学科课程标准,是获取中考信息的捷径,是提高教学效益的关键。教师要明白并教学生明白中考内容的范围及试题结构,搞清“考什么,怎么考”的问题。 密切注意中考动向,注重中考信息的搜集与整理,保持与教研室、中考改革先进县区、兄弟学校的密切联系,提高应试指导的科学性、时效性。

  4、组织好大型考试,搞好质量分析

  综合拉练、模拟考试,要做到考务严密,分析透彻,补漏措施具体,使每一次考试成为学生学习的加油站,教师教学的里程碑,教学质量的大会诊。

  5、重视非智力因素培养,加强学法指导

  要从只重视学生的智力因素转移到重视智力因素与非智力因素协调发展上来,特别应突出对学生学习兴趣与动力激发、学习习惯与品质养成、理想教育与成功教育等方面的研究和强化。要系统有序地教给学生本学科的学习方法,并注意跟上个别指导。

  6、因材施教,加强学生的分层次教育。

  切实贯彻“优生优培,中间生提高,困难生稳中求进”的原则。要增强优生优培意识,调整优生优培策略,要特别关注第一名,将其作为重点中的重点悉心培养。在课堂提问、试卷批阅等环节要注意对中程生倾斜,使其尽快优化,以提高平均分,增加其升入高中的机会。对学习困难生,更要多一份耐心,要想方设法鼓舞其信心,利用复习的机会掌握一些基本知识,提高平均分,顺利完成学业,以此提升平均分。

九年级下册数学教学工作计划合集

  一、教学目标

  完成课本内容和复习工作。 抓牢基础,使学生牢固地掌握基础知识,提高学生解题的基本技能同时注重基础知识的灵活应用,让学生在熟练基础知识基本技能的过程中学会从基本思路入手分析问题,解决问题.培养学生的逻辑思维能力、准确的运算能力、发展学生的空间观念和解决简单实际问题的能力,培养学生良好的学习习惯。

  二、学情分析

  本学期我继续教初四三班和四班的数学,两个班级的基础差距比较大,三班本学习的学习放弃比较浓厚,学习积极比较大,有部分同学能够自觉主动的学习,而四班的同学学习缺乏主动性,懒惰情绪严重。

  三、教材分析

  从教学内容上主要分为两大部分。一是代数部分,二是几何部分。代数部分内容包括:实数、整式、一次方程(组)、一元一次不等式(组)、分式、二次根式、一元二次方程、函数与图象、统计初步九部分内容。几何部分包括:平面几何基础知识、三角形、四边形、相似形、解直角三角形、圆六部分内容。

  复习重点一元二次方程、函数与图象、圆三部分内容复习难点圆与抛物线结合的类型题、几何综合问题、代数综合问题、根据所学知识设计方案等实际应用类型题。

  四、改进的措施与应注意的问题

  措施

  1、 认真积极参与学科教研,服从教研组的统一安排,遵守好教研纪律,认真思考领悟教研时其他教师的观点方法,学习好教研的教学安排,更要做好自己的工作。

  2、认真备课:备教材,备教法,备学法,备思想。及时了解学生的学习动向。

  3、关注学生们的学习情绪,及时调整调动课堂学习气氛,让学生们在愉快的氛围中认真学习。

  4、上课精讲精练,把时间多留给学生,把思考还给学生,注意学生听讲的情绪,力争让学生在课堂上能集中精力,在每堂课都发挥最高的效率。

  5、作业:按要求布置,全批全改。发现问题及时查漏补缺,针对作业中的普遍问题及时加以整改纠正,及时教育督促个别作业不认真的学生,让学生发挥其应有的潜力。

  6、注重优生培养和学困生的辅导。优生多注重其细节与过程,指导他们自主的学习,合理利用好业余时间,要在保证学好基础知识,做好固定作业的前提下进行能力的拓宽训练;针对学困生的特点,多从思想上关注,激发其向上的动力,培养其兴趣,树立起学好数学的信心,力争改变其学习态度与学习能力。

  7、做好各次考试的分析,找准与其他班级的差别,查找教与学中存在的不足,加以及时纠正与弥补,及时调整教学方法方向,并落实在日常工作教学中。

  8、转变学生的学习方式,提高学生的应试能力。

  以新理念指导自己的教学工作,牢固树立学生是学习的主人的思想,九年级学生的思想工作和教育方法都要讲究机巧,不能一味的严厉,要以关心、爱护、平和的`态度对待学生,建立和谐的师生关系。让学生紧张而快乐地学习,重视基础知识的掌握,让学生学会自学,学会从基本思路出发分析问题、解决问题,掌握一般解题规律。

  9、在今后的工作中,要不断学习,进行教学研究,了解中考信息。 教学中要重视教学内容的分析与研究及教学方法的研究。多研究中考题目,把握中考方向,让学生做题不走弯路,提高中考取胜机会。

  注意的问题

  ① 抓常规落实,切实提高课堂效率,注意重点,力求精而少,能少讲的一定少讲,把时间留给学生,把思考还给学生,切实培养其自主学习的能力。

  ② "以人为本",面向全体,并注重个体差异,针对不同的学生采取多种不同的方式来引导、教育,多关注学困生的表现;抓基础,重习惯培养,为中考打下坚实的基础。

  ③ 注意优生培养,抓细节,重过程,形成一个"比学赶帮超"的良好竞争气氛。

  五、教学业务学习和有关教学活动安排

  认真学习研究课程标准、教材和两本书(《"和谐高效,思维对话"---新课堂教学的理论研究》《"和谐高效,思维对话"---新课堂教学的实践探索》)。根据学生的年龄特点和成长规律及学段特点,制定不同学段的培养目标、任务和要求。重视学生学习兴趣、学习习惯的培养,重视教法和学法的更新与运用。加强信息技术学习,不断提升数学教师的信息技术素养,增强应用信息技术的意识与能力。

九年级下册数学教学工作计划合集

  经过三年的努力,在今年的中考中,我所教248班的数学成绩比以往的任何一届有了一定的提高,下面就是本人的一些做法和体会。

  一、吸引每个学生,上好每一节课。我想这个才是最重要的,我们时常要求学生学会听课,那么自己的课堂是不是能吸引住学生,能不能让每个学生真正的参与到教学中,只有充分备好课,力争让每一节课都有一个亮点,让学生感觉每节课都象是很新鲜,渴望求知的欲望若能给吊起来,这样的课应该成功一半了。我的具体做法有以下几种:

  1、案例分析法。比如上课前将上节课学生作业中的错题展现在黑板上,让学生来进行分析,让学生讲比我们老师讲的效果要好得多,同时也会不时产生新的做法,若能将几种做法再加以优化效果会更好,这样的反馈效果也应该是最好的;将学生的好的做法在课堂前展现也是不错的方法,这样做的目的不仅是推广了一种好的做法,而且是一种榜样,是一种激励,不仅能影响到受表扬的学生,更会激起更多的学生去探索好的做法,好的思路,好的角度等等,在课堂前都能受到老师的表扬,在课堂前都能让全班同学向自己学习,那心情就别提会有多好,整个班级的氛围会相当不错。

  2、调动学生的积极。为了让学生掌握一个知识或者是一种技能,或者是一种你认为很有必要的数学思想,一定要在接受新知识前,发挥自己语言的优势,煽动性越强越好,比如我在讲一元二次方程中的公式法时,我在课堂上说,“直接开平方法解方程你没学好没关系,因为它太特殊了,配方法你也可以不会,因为它太繁,今天我们将学习一种万能的方法,它就象是一个模板一样,代入直接出结果,相当方便,非常智能化。”有了这样导入语后,什么层次的学生都想学会,因为它万能呀?这样做对于教学效果的提高有很好的作用。

  3、要善于探索。一个优秀的老师不是看你上课讲了多少,而是让学生悟出了多少,最智慧的老师会给学生留下足够多的时间让学生自己去捉摸,所以探索很有必要,想要突出的问题不要我们用最大气力,花费最多的时间去讲,而是让学生自己去尝试错误,让学生们自己探索,让学生向权威挑战,所以作为毕业班的老师更应该给学生充分尝试错误的机会和空间。

  二、要提高教学质量,还要做好课后辅导工作,初中的学生爱动、好玩,缺乏自控能力,常在学习上不能按时完成作业,有的学生抄袭作业,针对这种问题,就要抓好学生的思想教育,并使这一工作惯彻到对学生的学习指导中去,还要做好对学生学习的辅导和帮助工作,尤其在后进生的转化上,对后进生努力做到从友善开始,比如:看到学生时,主动跟他们打招呼,课余时间主动跟他们聊天,拉近心里的距离,做这他们的好朋友。还要从赞美着手,所有的人都渴望得到别人的理解和尊重,所以,和差生交谈时,对他的处境、想法表示深刻的理解和尊重,还有在批评学生之前,先谈谈自己工作的不足。让师生关系和谐起来,信其人,顺其道。

  三、虚心向别人学习。

  1、向同事学习。大家都会有一种感觉,无论什么时间,什么地点每听同事们一节课,假若你是抱着一种学习的态度的话,你总会从中学习到一点或者是几点,所以有时间听听同科老师的课,课余时间与同年级的教师谈谈学生学习的态度、方法,与同科的教师探究更好的解题方法,是非常有必要的,活到老学到老,一点不错,只有这样自己才会不断的进步。三年来我们备课组在这一点做得是非常好的,每次的教研会,大家都会畅所欲言,将各种想法从分散到统一,再从统一到分散,真正做到了资源共享,分工合作,相信每一个同志经过三年都会有一定的提高。

  2、向学生学习。从学生的课堂解答思路,作业解答过程,检测的解答方法,对于学生好的思考角度,好的做法,我都会用另外的一个本子专门记录学生的好的做法,好的思路, 尽量做到“你有我优,你优我先,你先我简,你简我全”,这就是向学生学习的标准,也是进行科学研究的基础和遵循的游戏规则。学生数学的兴趣,课堂上讲练结合,布置好课外作业,作业少而精,减轻学生的负担。

  经过三年的努力,248班的数学成绩有了一定的提高,特别是韦雪芬、周立斌、黄嘉慧、凌航、周保宏、韦婷婷、韦晓敏等同学,在这次的中考中都考到了A等分,并且考上高中都进入宏志班或民族班。当然经过一轮教训还是很多的,在今个学期我教的252班(也是毕业班)中我将改进以下几个方面:

  1、树立高标意识。由于我学生的问题,所以在平时的教学中对优秀学生这一块没有做的精中更精,在拓展方面做的不是很到位,练习量不是太足。

  2、面向全体学生。对于中等生和后进生都要关注,不要认为班里有6、7个成绩差不多的就行了,没有能面向全体,从而丧失了更多的可能,所以要关注每一个学生的发展,按照新课标的具体要求去做,真正让每一个学生学习到必要的数学知识。

  走进新课改,学校对教师的素质要求更高,在今后的教育教学工作中,我将更严格要求自己,努力工作,发扬优点,改正缺点,开拓前进,为美好的明天奉献自己的力量。

九年级下册数学教学工作计划合集

  一、 指导思想:

  深入推进和贯彻《初中数学新课程标准》的精神,以学生发展为本,以改变学习方式为目的,以培养高素质的人才为目标,,培养学生创新精神和实践能力为重点的素质教育,探索有效教学的新模式。 以课堂教学为中心,紧紧围绕初中数学教材、数学学科“基本要求”进行教学,针对近年来中考命题的变化和趋势进行研究,收集试卷,精选习题,建立题库,努力把握中考方向,积极探索高效的复习途径,力求达到减负、加压、增效的目的,促进学生生动、活泼、主动地学习,力求中考取得好成绩。通过数学课的教学,使学生切实学好从事现代化建设和进一步学习所必须的基本知识和基本能力,在思维能力、情感态度与价值观等多方面得到进步和发展。

  二、学情分析:

  所带九年级五班、六班学生上学期成绩一般,两极分化严重。个别学生不重视学习,学习习惯较差。经过一学期的努力,很多学生在学习习惯方面有较大改进,学习积极性有所提高。也有少数学生自制能力较差,对自己要求不严,甚至自暴自弃。这些都需要针对不同情况采取相应措施,耐心教育。

  三、 教材分析:

  本学期的新内容只剩两章:圆和统计与概率。

  圆这章的主要内容是圆的定义和性质,点、直线、圆与圆的位置关系,圆的切线,弧长和扇形的面积,圆锥的侧面展开图,平行投影和中心投影,三视图。本章涉及的概念、定理较多,应弄清来龙去脉,准确理解和掌握概念与定理。垂径定理及推论、圆的切线的判定定理和性质定理是本章的重点。垂径定理、圆周角定理的证明、运用与圆有关的性质解决实际问题以及根据三视图描述基本几何体或实物原型,是本章的教学难点。

  统计概率这章有总体与样本、用样本估计总体两小节。统计估计是统计理论和应用的一项重要内容,其基本思想是通过部分估计全体。本章在介绍总体、个体、样本、样本容量的概念后,先后以百分比、平均数和方差为例,介绍了用样本估计总体的统计思想方法。本章的重点和难点是用样本的某种特殊性去估计总体相应特性的统计思想方法。

  四、 教学目标:

  1、情感态度与价值观:通过学习交流、合作、讨论的方式,积极探索,激发学生的学习兴趣,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观,使学生的情感得到发展。

  2、知识与技能:理解点、直线、圆与圆的位置关系,弧长和扇形的面积,圆锥的侧面展开图,平行投影和中心投影,三视图。掌握圆的切线及与圆有关的角等概念和计算。教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。提高学生学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。掌握初中数学教材、数学学科“基本要求”的知识点。

  3、过程与方法:经历探索过程,让学生进一步体会数学来源与实践又反过来作用于实践。通过探索、学习,使学生逐步学会正确、合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。围绕初中数学教材、数学学科“基本要求”进行知识梳理,围绕初中数学“四大块”主要内容进行专题复习,适时的进行分层教学,面向全体学生、培养全体学生、发展全体学生。

  五、教学措施:

  1、认真学习钻研新课标,通盘熟悉初中数学教材及教学目标,认真备好每一堂课,精心制作总复习计划;

  2、认真上好每一堂课,抓住关键点,分散难点,突出重点,在培养能力上下工夫;

  3、注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验;

  4、加强学校教师与家长、社会的联系,共同努力提高学生的学习成绩;

  5、积极与其他教师沟通,加强教研教改,提高教学水平;

  6、经常听取学生良好的合理化建议;

  7、以“两头”带“中间”的战略不变;

  8、注重教学中的自主学习、合作学习、探究学习等学习方式的引导;

  9、认真开展课内、课外活动,激发学生的学习兴趣。

  九年级时间非常紧张,既要完成新课的教学任务,有要考虑到在九年级下册时对初中阶段整个教学知识进行全面,系统的复习。所以在制定教学计划时,一定要注意时间的安排,同时要把握好家学进度。

  六、 教学课时安排:

  1、第1周至第4周:完成圆的教学任务,并完成测验、分析、讲评。

  2、第5周:完成统计估计的教学任务,并完成测验、分析、讲评。

  3、第6周至第7周:围绕初中数学学科“基本要求”进行第一轮总复习,使学生掌握每个章节的知识点,熟练解答各类基础题,对每个章节进行测验,检测学生掌握程度,促知识巩固,力求做到人人过关。

  4、第8周至第9周:第二轮总复习,综合练习,分层提高阶段,力求使不同层次的学生都能得到发展。

  5、第10周至第11周:第三轮总复习,初中数学“四大块”主要内容进行专题复习和训练,促师生潜能开发,使学生的数学知识与结构得以纵深发展。

  6、 第12周至13周:专题训练。针对不同知识进行专项练习。

  7、第14周至16周;模仿中考试题进行综合知识模拟训练,提高学生应试能力。

  8、第17周:考前方法与心理的培训,使学生能有一个良好、健康的心理,平和的心态参加“升学考试”力争使每一个学生发挥出最佳水平,取得最好成绩 七、教学进度 :

  第 1---4 周-----第三章圆

  第 5 周-----第四章 统计与概率

  第 6 周-----第一轮总复习

  第 7---8 周-----第二轮总复习

  第 9--10 周-----第三轮总复习

  第 11 周-----专题一

  第 12 周-----专题二

  第 13 周-----专题三

  第14--16周-----综合模拟训练

  第 17 周-----考前方法与心理培训

九年级下册数学教学工作计划合集

  教学目标

  【知识与技能】

  使学生能利用描点法作出函数y=ax2+k的图象.

  【过程与方法】

  让学生经历二次函数y=ax2+k的性质探究的过程,理解二次函数y=ax2+k的性质及它与函数y=ax2的关系,培养学生观察、分析、猜测并归纳、解决问题的能力.

  【情感、态度与价值观】

  培养学生敢于实践、勇于发现、大胆探索、合作创新的精神.

  重点难点

  【重点】

  会用描点法画出二次函数y=ax2+k的图象,理解二次函数y=ax2+k的性质,理解函数y=ax2+k与函数y=ax2的相互关系.

  【难点】

  正确理解二次函数y=ax2+k的性质,理解抛物线y=ax2+k与抛物线y=ax2的关系.

  教学过程

  一、问题引入

  1.二次函数y=2x2的图象是,它的开口向,顶点坐标是,对称轴是,在对称轴的左侧,y随x的增大而;在对称轴的右侧,y随x的增大而.函数y=ax2在x=时,取最值,其最值是.

  2.抛物线y=x2+1,y=x2-1的开口方向、对称轴和顶点坐标各是什么?

  3.抛物线y=x2+1,y=x2-1与抛物线y=x2有什么关系?

  二、新课教授

  问题1:对于前面提出的第2、3个问题,你将采取什么方法加以研究?

  (画出函数y=x2+1、y=x2-1和函数y=x2的图象,并加以比较.)

  问题2:你能在同一直角坐标系中画出函数y=x2+1与y=x2的图象吗?

  师生活动:

  学生回顾画二次函数图象的三个步骤,按照画图的步骤画出函数y=x2+1、y=x2的图象,观察、讨论并归纳.

  教师写出解题过程,与学生所画的图象进行比较,帮助学生纠正错误.

  解:(1)列表:

  x…-3-2-10123…

  y=x2…9410149…

  y=x2+1…105212510…

  (2)描点:用表格中各组对应值作为点的坐标,在平面直角坐标系中描点.

  (3)连线:用光滑曲线顺次连接各点,得到函数y=x2和y=x2+1的图象.

  问题3:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?

  师生活动:

  教师引导学生观察上表并思考,当x依次取-3、-2、-1、0、1、2、3时,两个函数的函数值之间有什么关系?

  学生观察、讨论、归纳得:当自变量x取同一数值时,函数y=x2+1的函数值比函数y=x2的函数值大1.

  教师引导学生观察函数y=x2和函数y=x2+1的图象,先研究点(-1,1)和点(-1,2)、点(0,0)和点(0,1)、点(1,1)和点(1,2)的位置关系.

  学生观察、讨论、归纳得:反映在图象上,函数y=x2+1的图象上的点都是由函数y=x2的图象上的相应点向上移动了一个单位.

  问题4:函数y=x2+1和y=x2的图象有什么联系?

  学生由问题3的探索可以得到结论:函数y=x2+1的图象可以看成是将函数y=x2的图象向上平移一个单位得到的.

  问题5:现在你能回答前面提出的第2个问题了吗?

  生:函数y=x2+1与函数y=x2的图象开口方向相同、对称轴相同,但顶点坐标不同,函数y=x2的图象的顶点坐标是(0,0),而函数y=x2+1的图象的顶点坐标是(0,1).

  问题6:你能由函数y=x2+1的图象得到函数y=x2+1的一些性质吗?

  生:当x0时,函数值y随x的增大而减小;当x0时,函数值y随x的增大而增大;当x=0时,函数取得最小值,最小值是y=1.

  问题7:先在同一直角坐标系中画出函数y=2x2+1与函数y=2x2-1的图象,再作比较,说说它们有什么联系和区别.

  师生活动:

  教师在学生画函数图象的同时,巡视指导.学生动手画图,观察、讨论、归纳.

  解:先列表:

  x…-2-1.5-1-0.500.511.52…

  y=2x2+1…95.531.511.535.59…

  y=2x2-1…73.51-0.5-1-0.513.57…

  然后描点画图,得y=2x2+1,y=2x2-1的图象.

  教师让学生发表意见,归纳为:函数y=2x2+1与函数y=2x2-1的图象的开口方向、对称轴相同,但顶点坐标不同.函数y=2x2-1的图象可以看成是将函数y=2x2+1的图象向下平移两个单位得到的.

  问题8:你能说出函数y=x2-1的图象的开口方向、对称轴、顶点坐标以及这个函数的性质吗?

  师生活动:

  教师让学生观察y=x2-1的图象.

  学生动手画图,观察、讨论、归纳.

  学生分组讨论这个函数的性质,各组选派一名代表发言.最后归纳总结:函数y=x2-1的图象的开口向上,对称轴为y轴,顶点坐标是(0,-1);当x0时,函数值y随x的增大而减小;当x0时,函数值y随x的增大而增大;当x=0时,函数取得最小值,最小值为y=-1.

  三、巩固练习

  1.在同一直角坐标系中,画出函数y=x2、y=x2+2、y=x2-2的图象.

  (1)填表:

  x… …

  y=x2… …

  y=x2+2… …

  y=x2-2… …

  (2)描点,连线:

  【答案】略

  2.观察第1题中所画的图象,并填空:

  (1)抛物线y=x2+2的开口方向是,对称轴是,顶点坐标是;抛物线y=x2+2是由抛物线y=x2向平移个单位长度得到的;

  (2)对于y=x2-2,当x0时,函数值y随x的增大而;当x0时,函数值y随x的增大而;

  (3)对于函数y=x2,当x=时,函数取最值,为.

  对于函数y=x2+2,当x=时,函数取最值,为.

  对于函数y=x2-2,当x=时,函数取最 值,为 .

  【答案】(1)向上 x=0 (0,2) 上 2 (2)增大 减小 (3)0 小 0 0 小 2 0 小 -2

  四、课堂小结

  1.函数y=ax2(a≠0)和函数y=ax2+k(a≠0)的图象形状相同,只是位置不同,把y=ax2的图象沿y轴向上(当k0时)或向下(当k0时)平移|k|个单位就得到函数y=ax2+k的图象.

  2.抛物线y=ax2+k(a≠0)的性质.

  (1)抛物线y=ax2+k(a≠0)的对称轴是y轴,顶点坐标是(0,k).

  (2)当a0时,抛物线开口向上,并向上无限伸展;

  当a0时,抛物线开口向下,并向下无限伸展.

  (3)当a0时,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大.这时,当x=0时,y有最小值k.

  当a0时,在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小.这时,当x=0时,y有最大值k.

  教学反思

  通过本节课的学习,学生做到了以下三个方面:首先,掌握函数y=ax2(a≠0)和函数y=ax2+k(a≠0)的图象形状相同,只是位置不同,把y=ax2的图象沿y轴向上(当k0时)或向下(当k0时)平移|k|个单位就得到y=ax2+k的图象;其次,能够理解a、k对函数图象的影响,初步体会二次函数关系式与图象之间的联系,渗透数形结合的思想,为今后的学习打下良好的基础;最后,形成严谨的学习态度和求简的数学精神.

  以上就是数学网为大家整理的九年级下册数学教学计划:第6章第2节二次函数的图象和性质(2课时),怎么样,大家还满意吗?希望对大家有所帮助,同时也祝大家学习进步,考试顺利!

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo6.com 版权所有 湘ICP备2023023988号-11

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务